
Kubernetes
for Machine Learning,

Deep Learning & AI

By Sam Charrington
Founder & Host - This Week in Machine Learning & AI

Principal Analyst - CloudPulse Strategies

with

Sriram Subramanian, Contributor

Mia Figueroa, Copy Editor

Kubernetes
for Machine Learning,

Deep Learning & AI

PAGE 3

Table of Contents

Introduction..4

The Machine Learning Process...6

Supporting Machine Learning at Scale...9

Enter Containers and Kubernetes..12

Getting to Know Kubernetes..13

Kubernetes for Machine and Deep Learning...16

The Kubernetes ML/DL Ecosystem...19

Case Studies..27

Getting Started..30

References..31

Introduction
Machine learning is a subfield of artificial intelligence (AI) that enables computer systems to
identify, or learn, patterns in data using statistical methods. These learned patterns are
captured in a model that can be used to make predictions or perform tasks without explicit
programming.

The training process is central to machine learning (ML). In order to produce a model, we
train the system by applying a learning algorithm to a training dataset. If this process is
successful, the model will be able to identify the relationship between features and labels
in the training data.* Features refer to specific attributes or characteristics of the training data
likely to help the model make accurate predictions. Labels refer to the answers that we want
our model to predict given a set of input features. Once a model is trained, it can then be
used for inference or scoring; that is, querying the model with new, unlabeled data to predict
how it should be labeled.

For a simple example, consider the problem of predicting home values from available real
estate data. We know intuitively that a relationship exists between the characteristics of a
home such as its size, number of bedrooms and baths, and location (i.e., our features), and
the prices the properties ultimately sell for (i.e., our labels). Yet without using machine learning,
it would be very difficult to accurately capture this relationship as a rule or set of rules,
especially as we increase the number of features.

This example helps illustrate the importance of machine learning not just as a statistical tool,
but as a new way of developing software. This viewpoint has been captured succinctly as
“Software 2.0”1 by Andrej Karpathy, Director of AI at Tesla. Software 2.0 refers to the idea that
in traditional programming (i.e., “Software 1.0”), software developers start with some data
they want to operate on and a set of explicit rules for processing that data. Those rules are
manually encoded as software programs via the software development process. These
programs are then used to solve the task at hand, whatever that might be.

In contrast, machine learning (i.e., Software 2.0) allows us to extract the rules for solving some
task automatically from a set of features and labels in a training dataset. This is particularly
useful in situations for which it would be very difficult for humans to identify, much less
program, the complete set of governing rules.

PAGE 4

There are several types of machine learning. While the specific use of labeled training datasets
is characteristic of supervised learning, as opposed to unsupervised or reinforcement learning, the
first is the most popular type of machine learning in use today. While this book occasionally refers
to labels and other supervised learning concepts, its key messages apply broadly.

Figure 1. Classical programming vs machine learning

For such tasks, like identifying faces or objects in photos, distinguishing spam emails, or
identifying fraudulent transactions, it has proven much more effective to use machine learning
models than manually coded programs. With machine learning, we can essentially teach
computers how to program themselves using data!

Modern ML is powered by algorithms that, for the most part, have been available for decades.
Nonetheless, the field is experiencing dramatic growth due to a number of shifts in the
industry. Recent changes include an explosion in the amount of available training data and
affordable computing power, advances in how models are trained, and a boom in the amount
and quality of tools for developing machine learning solutions.

 Figure 2. Advances in data, hardware, algorithms, and tools
have contributed to the modern ML revolution

A notable subfield of machine learning is deep learning. Deep learning (DL) today largely
refers to the use of a specific type of machine learning model—one made up of neural
networks with many layers. Deep neural networks (DNNs) can identify very complex patterns
in their input data, making deep learning a powerful technique. Today, DNNs represent the
state of the art in many applications involving voice, video, and pictures, and are increasingly
finding use in natural language processing and tabular data. The unfortunate drawback of
deep learning is that training these models can require substantially more labeled data, time,
and computational horsepower than traditional ML models.

Over the past several years, enterprises have begun exploring the benefits of applying machine
and deep learning to deliver business results in a variety of areas. For example, Home Depot
uses a machine learning model to reduce what it calls “shelf outs,”2 when items exist in in-
store inventory but not on store shelves. Satellite imagery startup Descartes Labs applies

PAGE 5

Data Hardware
and Cloud

Algorithms Tools

Classical
Programming

Machine
Learning

</>
Rules

Rules

Data

Data

Answers

Answers

PAGE 6

machine and deep learning to enable analytics and search over geospatial data.3 And Booking.
com, a travel e-commerce company, uses machine learning to provide travel recommendations
to their customers.4

Industries spanning healthcare, publishing, finance, manufacturing, and more are increasingly
turning to ML and DL to improve facets of their business. Potential applications include
everything from decision-making, customer service, recommendations, and even building
entirely new offerings like self-driving vehicles.

Many early ML adopters have found that as they grow their internal machine learning capacity,
more (and more profitable) ways to apply the technology become apparent. For enterprises
seeking to take full advantage of the transformational opportunities offered by machine
learning, improving their ability to bring ML-based solutions to more areas of the business
can be a worthwhile investment.

The Machine Learning Process
Before we can discuss scaling the delivery of machine learning in the enterprise, we must
understand the full scope of the machine learning process. Much of the industry dialogue
around machine learning is focused on modeling, but to achieve scale models must be
developed within a repeatable process that accounts for the critical activities that precede
and follow model development.

Figure 3. The machine learning process

Data acquisition and preparation
To build models, data scientists and machine learning engineers* must have access to large
quantities of high-quality labeled training data. This data very rarely exists in a single place
in a form directly usable by data scientists. Rather, in the vast majority of cases, the training
dataset must be built by data scientists, data engineers, machine learning engineers, and
business domain experts working together.

Data Acquisition
and Preparation

Model Training
and Development

Model
Deployment

Data
Management

Experiment
Management

Model
Management

Model
Evaluation

Machine learning engineer (MLE) is an emerging job title for software engineers specializing in
building machine learning systems. MLEs have an understanding of data science and machine
learning, though they are perhaps not as strong on the fundamentals as a data scientist. They
are much stronger, though, in their understanding of how to build, deploy and support production-
quality software.

The creation of training datasets involves combining data from one or more sources. For
example, a data scientist building a product recommendation model might build the training
dataset by joining data from web activity logs, search history, mobile interactions, product
catalogs, and transactional systems.

In a large enterprise, each of these point data sources might come from a distinct silo, with
its own owner, access controls and protocols, data format, and compliance requirements.

Once acquired, training data must then be prepared for model development. To do this, data
scientists will apply a series of transformations to the raw data to cleanse and normalize it.
Examples include removing corrupt records, filling in missing values, and correcting
inconsistencies like differing representations for states or countries.

Transformations may also be required to extract labels. For example, developing a model that
predicts the likelihood that a customer will be lost, or churn, will require a label indicating which
of the customers in our transactional database are examples of churn. This can, in turn, require
a complex query against the data warehouse that considers factors such as the products or
services that we’re basing the prediction on, the number of days without a transaction that
we consider churn, the window in which we want to make predictions, and more.5

As a result of the organizational and technical complexity involved, the process of acquiring
and preparing enterprise data can consume the vast majority of a data scientist’s effort on a
given project—50 to 80 percent, according to some reports.6

Model training and development
A fine line separates the preliminary data cleansing and normalization steps associated with
data preparation from feature engineering, which is inextricably tied to the modeling process.

Feature engineering is the iterative process of creating the features and labels needed to
train the model through a series of data transformations. Feature engineering is often
performed in lock-step with model training, because the ability to identify helpful features
can have a significant impact on the overall success of the modeling effort. Simple examples
of feature engineering include generating derived features (such as calculating an age from
a birthdate) or converting categorical variables (such as transaction types) into one-hot
encoded, or binary, vectors.

With deep learning, features are usually straightforward because DNNs generate their own
internal transformations. With traditional machine learning, feature engineering can be quite
challenging and relies heavily on the creativity and experience of the data scientist or MLE
and their understanding of the business domain or ability to effectively collaborate with
domain experts.

PAGE 7

During modeling, data scientists and MLEs run a series of experiments against the available
data to identify a robust predictive model. Typically many models—possibly hundreds or
even thousands—will be trained and evaluated during modeling in order to identify the
architectures, learning algorithms, and parameters that work best for a particular problem.

As a result, training can be quite computationally intensive. Having access to the right
infrastructure for each experiment, such as GPUs, can significantly impact the speed and
agility of the data science team during training.

Model deployment
Once a model has been developed, it must be deployed for use in applications. This typically
involves embedding the model directly into application code or putting it behind an API. REST
APIs are increasingly used so that developers can access model predictions as microservices.

Model inference is even more computationally expensive than model training, though they
use computing resources very differently.* While training might require large bursts of CPU
or GPU over the course of several hours, days or weeks, each inference against a deployed
model requires a small but significant amount of computing power. Unlike the demands of
training, the computational burden of inference scales with the number of inferences made
and continues for as long as the model is in production.

Just like other application components, it is important to manage the lifecycle of deployed
models. Managing model versions, comparing the performance of competing alternatives,
and rolling back models that don’t work or underperform once deployed, are all examples
of the kinds of activities needed to effectively manage production models.

Model evaluation
Putting a model in production is the beginning of the model’s journey, not the end. Machine
learning models are perishable and their performance must be continuously evaluated to
identify degradation before it negatively impacts the business.

Models should be instrumented so that the inputs to and results of each inference are logged,
allowing usage to be reviewed and performance to be monitored on an ongoing basis. Owners
of models experiencing degraded performance should be notified so that corrective action,
such as retraining or re-tuning, may be taken.

PAGE 8

Google’s efforts to build its Tensor Processing Unit (TPU), a specialized chip for inference, began
in 2013 when engineer Jeff Dean projected that if people were to use voice search for three
minutes a day, meeting the inference demands of speech recognition would require Google data
centers to double in capacity.7

PAGE 9

Supporting Machine Learning at Scale
When an enterprise is just getting started with machine learning, it has few established ML
practices or processes. During this period, its data scientists and MLEs are typically working
in an ad hoc manner to meet the immediate needs of their projects. Data acquisition and
preparation, as well as model training, deployment, and evaluation, are all done manually
with little automation of or integration between these steps.

Once a team has operated in this way for more than a handful of projects, it becomes clear
that a great deal of effort is spent on repetitive tasks that can be automated, or worse, on
reinventing the wheel. For example, they may find themselves repeatedly copying the same
data, performing the same data transformations, engineering the same features, or following
the same deployment steps.

Left to their own devices, individual data scientists or MLEs will build scripts or tools to help
automate some of the more tedious aspects of the ML process so as to work more quickly.
This can be an effective stopgap, but left unplanned and uncoordinated, these efforts can
be a source of distraction and technical debt.

For organizations at a certain level of scale—typically when multiple machine learning teams
and their projects must be supported simultaneously—ML infrastructure teams are established
to drive efficiency and ensure that data scientists and MLEs have access to the tools and
resources they need to work efficiently.*

Common challenges encountered by ML infrastructure teams include:

Data management and automation
During exploratory machine learning efforts, including building proofs-of-concepts, it is quite
normal for data scientists or MLEs to spend considerable time manually procuring the data
required to build new models. Ad hoc data exploration and transformation are typical at
this stage.

As the organization’s reliance on machine learning matures, automating its various data
transformation, feature engineering, and ETL pipelines is necessary to increase modeling
efficiency and ensure reproducibility. Ideally, feature transformations are also stored for later

At Airbnb, for example, after gaining experience with applying machine learning to applications
like search ranking, smart pricing, and fraud prevention, the company realized that it would need
to dramatically increase the number of models it was putting into production in order to meet
its business goals. To enable this, an ML infrastructure team was established. The team’s mission
is to eliminate what it calls the incidental complexity of machine learning—that is, getting access
to data, setting up servers, and scaling model training and inference—as opposed to its intrinsic
complexity—such as identifying the right model, selecting the right features, and tuning the
model’s performance to meet business goals.

PAGE 10

use and cataloged for easy sharing across projects and teams. Beyond the modeling phase,
automated pipelines are critical to delivering ready-to-use feature data to production models
at inference time.

Data and feature transformations create new data which is often retained not just for training
but for future inference. The data produced by these transformations is not typically be saved
back in the systems of origin, such as transactional databases or log storage. Providing scalable
data storage and management is thus a significant challenge faced by teams supporting the
machine learning process.

Data management is greatly facilitated with a flexible, scalable, and secure data repository
such as a data lake, fabric, or warehouse in place. These technologies can also support the
low-latency and high-throughput access required by training and inference workloads without
requiring additional data replication.

Driving efficient resource use
Today, we have more raw computing power at our disposal than ever before. In addition,
hardware innovations such as high-density cores, GPUs, and TPUs are increasingly targeting
machine and deep learning workloads, promising a continued proliferation of computing
resources for these applications.

Despite declining computing costs, the machine learning process is so bursty and resource-
intensive that efficient use of available computing capacity is critical to supporting ML at scale.

The following are key requirements for efficiently delivering compute to machine learning
teams:

• Elasticity. Data preparation, model training, and model inference differ in the amount,
type, and timing of the resources they require. The machine learning process works
best when the individual tasks or workloads in the process can be scaled up when
needed, and scaled back down when done.

• Multitenancy. Given the computationally intensive and bursty nature of machine
learning training and inference, establishing dedicated hardware environments for each
machine learning team or workload is inefficient. Rather, the focus should be on creating
shared environments that can support the training and deployment needs of multiple
concurrent projects.

• Immediacy. Data scientists and MLEs should have direct access to a computing
environment where they can easily specify the number and type of resources needed
without waiting for manual provisioning.

• Programmability. The creation of new environments, and the ability to scale existing
environments up and down, must be available via APIs to enable the automated
provisioning of infrastructure and maximize resource utilization.

These are, of course, the characteristics of modern, cloud-based environments. This does
not, however, mean that we’re required to use the public cloud to do machine learning
at scale.

While the public cloud’s operating characteristics make it a strong choice for running machine
learning workloads, there are often other considerations at play. For example, cloud-based
GPU instances can be pricey, leading many organizations to choose local GPU servers instead.
In addition, it is often best to colocate machine learning training and inference workloads with
production applications and data in order to minimize network latency and reduce bandwidth
requirements. As a result, private clouds are a worthy consideration for many organizations.

Ultimately, in a world of declining hardware prices, decreasing cloud costs, and shifting
workloads, it is prudent to build flexibility into new tools and platforms, so that they can be
efficiently operated in both public and private cloud environments.

Today we’ve got more—and more affordable—raw compute power
at our disposable than ever before. While compute costs continue

to decline rapidly, the machine learning process is so bursty
and resource intensive that efficient use of compute is critical

to supporting machine learning at scale.

Hiding complexity
With the rise of Platform as a Service (PaaS) offerings and DevOps automation tools, software
developers can now operate at a higher level of abstraction than ever before, allowing them
to focus on the applications they are building and not worry about the underlying infrastructure
on which their software runs.

Similarly, in order for the machine learning process to operate at full scale and efficiency,
data scientists and MLEs must be able to focus on their models and data products rather
than infrastructure.

This is especially important because data products are built on a complex stack of rapidly
evolving technologies. These include deep learning frameworks like TensorFlow and PyTorch,
language-specific libraries like SciPy, NumPy and Pandas, and data processing engines like
Spark and MapReduce. These tools are supported by a variety of low-level drivers and libraries
like NVIDIA’s CUDA, which allows jobs to take advantage of the GPU and is notoriously difficult
to correctly install and configure.

Managing these dependencies manually can be a constant drain on the machine learning
process, and can be the source of hard-to-debug discrepancies between results seen in
training and production.

PAGE 11

For all these reasons and more, many machine learning and deep learning teams have turned
to containers and Kubernetes to overcome the infrastructure challenges of machine and
deep learning.

Figure 4. Data products are built on a complex stack of technologies

Enter Containers and Kubernetes
The introduction of Docker containers in 2013 initiated a dramatic shift in the way software
applications are developed and deployed.

Container images provide a standardized, executable package that provides everything
needed to run an application, including its code, dependencies, tools, libraries and configuration
files. A running Docker container is an instantiation of a container image.

Compared with virtual machines, container images are lighter weight, easier to move between
environments, and faster to spin up. This is in large part because they can share the host
operating system’s (OS) kernel, as opposed to containing their own copy of a complete OS.

The fact that lightweight containers could be reliably run across disparate computing
environments helped address many of the challenges faced by software development and
operations organizations as they sought to modernize their software delivery processes,
applications, and infrastructure, leading to their ultimate popularity.

As we’ve seen, data science and ML engineering teams face many of the same challenges as
application developers, so it should come as no surprise that containers can play a role in
solving their problems too.

But containers alone don’t provide the complete solution. In real-world systems, it is often
necessary to use multiple containers, make the services they offer easily accessible, and connect
them to a variety of external data sources. An orchestration platform is required to efficiently
manage the containers and their interactions with one another and the outside world.

PAGE 12

Operating System

NVIDIA Driver

CUDA

cuDNN

Python

Keras

TensorFlow Theano CNTK PyTorch

100s of Other Data
Science, Analysis &

Visualization
Packages

Fast.ai

PAGE 13

That’s where Kubernetes comes in. Kubernetes is an open source container orchestration
platform developed and open-sourced by Google in 2014. Kubernetes has since become the
de facto standard for container orchestration with support from all major vendors due to its
early success, user adoption, and the workload portability it creates between on-premises
and public cloud environments.

Kubernetes provides the necessary features required for complete lifecycle management of
containerized applications and services in a manner that has proved to be highly scalable
and reliable.

Before exploring what this means for machine learning workloads, let’s learn a bit about
Kubernetes itself.

Getting to Know Kubernetes
Kubernetes takes a hierarchical approach to managing the various resources that it is
responsible for, with each layer hiding the complexity beneath it.

The highest-level concept in Kubernetes is the cluster. A Kubernetes cluster consists of at
least one master which controls multiple worker machines called nodes. Clusters abstract
their underlying computing resources, allowing users to deploy workloads to the entire cluster
as opposed to on particular nodes.

A pod is a collection of one or more containers and their configuration. It is the basic workload
unit in Kubernetes. All containers within a pod share the same context, resources (such as
storage and networking) and lifecycle.

Figure 5. Basic Kubernetes architecture

Containers

Host OS

Pod

Containers

Pod

Node

Admin
CLI

API

Kubernetes
Master Container runtime (Docker)

The Kubernetes master can be thought of as the “brain” of the cluster. It responds to cluster
configuration and management requests submitted via the Kubernetes client or API. It is
responsible for determining which pods are deployed to which nodes based on their respective
requirements and capabilities, a process called scheduling. The master maintains the overall
health of the cluster by re-scheduling pods in reaction to faults such as server failures.

Nodes in a Kubernetes cluster listen for instructions from the master and create, run, or
destroy containers accordingly. This necessitates the presence of a container runtime, such
as Docker, running on each node.

To run a workload on a Kubernetes cluster, the user provides a plan that defines which pods
to create and how to manage them. This plan can be specified via a configuration document
which is sent to the cluster via Kubernetes’ APIs or client libraries.

When the master receives a new plan, it examines its requirements and compares them to
the current state of the system. The master then takes the actions required to converge the
observed and desired states. When pods are scheduled to a node, the node pulls the
appropriate container images from an image registry and coordinates with the local container
runtime to launch the container.

Files created within a container are ephemeral, meaning they don’t persist beyond the lifetime
of the container. This presents critical issues when building real-world applications in general
and with machine learning systems in particular.

First, most applications are stateful in some way. This means they store data about the requests
they receive and the work they perform as those requests are processed. An example might
be a long training job that stores intermediate checkpoints so that the job doesn’t need to start
over from the beginning should a failure occur. If this intermediate data were stored in a
container, it would not be available if a container fails or needs to be moved to another machine.

Next, many applications must access and process existing data. This is certainly the case when
building machine learning models, which requires that training data be accessible during
training. If our only option for data access was files created within a container, we would need
to copy data into each container that needed it, which wouldn’t be very practical.

To address these issues, container runtimes like Docker provide mechanisms to attach
persistent storage to the containers they manage. However, these mechanisms are tied to
the scope of a single container, are limited in capability, and lack flexibility.

Kubernetes supports several abstractions designed to address the shortcomings of container-
based storage mechanisms. Volumes allow data to be shared by all containers within a pod
and remain available until the pod is terminated.

PAGE 14

Persistent volumes are volumes whose lifecycle is managed at the cluster level as opposed
to the pod level. Persistent volumes provide a way for cluster administrators to centrally
configure and maintain connections to external data sources and provide a mechanism for
granting pods access to them.

Figure 6. Kubernetes volumes provide a flexible abstraction for accessing a
wide variety of storage systems from containerized workloads

First and third-party volume drivers allow Kubernetes users to access a wide variety of volume
types including local disk, iSCSI, NFS, vSphere, major cloud providers’ block and object storage
systems, data lakes and data warehouses, distributed storage systems, and more.

“Deep learning is an empirical science, and the quality of a
group’s infrastructure is a multiplier on progress. Fortunately,
today’s open-source ecosystem makes it possible for anyone

to build great deep learning infrastructure.”

OpenAI

PAGE 15

!"#$%&#'()
!"#$%&#'()
Containers

Pod

Cluster

Cloud
Storage

Data LakeFiles Database/
Data warehouse

Volume

Persistent
Volume

!"#$%&#'()
!"#$%&#'()
Containers

Pod

Volume Volume

Persistent
Volume

Kubernetes for Machine and Deep Learning
Containers and Kubernetes help organizations address each of the aforementioned machine
learning process challenges with a broadly-supported open-source platform.

Data management and automation
By providing the fundamental mechanism with which storage is connected to containerized
workloads, volumes and persistent volumes provide the raw materials that enable Kubernetes’
support for stateful applications, including machine and deep learning.

Upon these primitives, a variety of tightly integrated third-party solutions are available that
enable highly automated data processing pipelines to be constructed, ensuring the ability to
reliably deliver properly transformed data to models without manual intervention. Several
of these options are discussed in a later section of this document.

Third-party data fabric products allow Kubernetes workloads to gain unified access to
enterprise data in distributed storage systems or data warehouses. This eliminates the need
for teams to navigate multiple systems and data access methods to obtain data, and facilitates
the reuse of transformed data and processed features across projects.

Driving efficient resource use
Users can scale out a Kubernetes cluster as needed, simply by adding more physical or virtual
servers to it.

Kubernetes has the ability to track different node attributes, such as the type and number
of CPUs or GPUs present, or the amount of RAM available. These attributes are considered
when scheduling jobs to nodes, ensuring that sparse resources are allocated efficiently.

For resource-intensive workloads like machine learning, users face the conundrum of over-
allocation or under-utilization. That is, they must manage the fine balance between either
employing more resources than required, or running out of resources. Kubernetes’ solution
to this is auto-scaling, which is the ability to scale up or down the number of nodes a given
workload is running on at any time.

A single physical Kubernetes cluster can be partitioned into multiple virtual clusters using
Kubernetes’ namespaces feature. This allows a single cluster to more easily support different
teams, projects or functions.

Each namespace can be configured with its own resource quotas and access control
policies, making it possible to specify the actions a user can perform and the resources
they have access to, allowing sophisticated multitenancy needs to be accommodated.
Namespace-level configuration allows resources like storage to be configured on a per-
team, -project, or -function basis.

PAGE 16

PAGE 17

A Kubernetes cluster can consist of either physical or virtual servers. These servers can use
commodity or specialized hardware and can be hosted anywhere. As a result, the same
containerized workload can be run on any platform or in any location without any changes
to the application’s code.

Hiding complexity
Containers provide an efficient way of packaging machine learning workloads that is
independent of language or framework. Kubernetes provides a reliable abstraction layer for
managing containerized workloads and provides the necessary configuration options, APIs,
and tools to manipulate these workloads declaratively.

While working with containers and containerized workloads may be a new skill for many data
scientists, they should be a familiar tool for machine learning engineers exposed to modern
software development practices. User interfaces, command-line tools, or integration with
source code repositories can simplify creating and managing containers for end users.

While introducing its own set of tools, the use of containers to encapsulate data science
jobs provides the valuable benefit of shielding those workloads from the complexity of the
underlying technology stack. This ensures that the correct and consistent dependencies are
in place wherever jobs are run, whether on the developer laptop, training environment, or
production cluster.

Figure 7. Containers and kubernetes address major ML/DL challenges

DATA MANAGEMENT
AND AUTOMATION

DRIVING EFFICIENT
RESOURCE USE

HIDING
COMPLEXITY

Kubernetes provides
connectors for diverse

data sources and manages
volume lifecycle

Data workflow & pipeline
abstractions (3rd party)

allow complex data
transformations to be

executed across cluster

Data fabrics (3rd party)
extend scalable,

multi-format storage
to cluster

Kubernetes provides elasticity,
allowing cluster and workloads

to be easily scaled up/down

Multitenancy allows multiple
teams to share cluster

Users can deploy workloads
on-demand via CLI, API
without IT intervention

Users and tools can
programmatically deploy

and control workloads

Containers provide a convenient
format for packaging workloads

and declaring dependencies

Kubernetes abstracts
infrastructure, allowing users

to think of cluster as
unit of compute

MapR Data Platform
MapR Data Platform is an all-software
data platform designed to deliver exabyte
scale, mission-critical reliability, and high
performance. MapR provides unmatched
data protection, disaster recovery, security,
and management services for disparate
data types, including files, objects, tables,
events, and more.

MapR Data Fabric for Kubernetes builds on this
platform to provide persistent storage for containers. It enables the deployment of stateful
containers for data pipelines and machine learning training and inference workloads, as
well as a variety of production use cases.

MapR features supporting machine and deep learning include:

• Vast scalability. Store exabytes of structured and unstructured data in a distributed file
and object store.

• Global namespace. Access globally distributed data, within and across clouds and on-
premises deployments.

• Diverse data. Unify files, objects, containers, tables, and publish/subscribe events with
one comprehensive solution.

• Multi-tenant security. Secure distributed data with built-in security, encryption, and access
control.

• Seamless AI readiness. Provide fast data access via the latest ML, DL, and analytical toolkits
without data movement.

MapR and NVIDIA recently published a reference architecture illustrating how customers
running containerized data science workloads on NVIDIA’s DGX-1 deep learning supercomputer
and the MapR Data Fabric for Kubernetes can benefit from this combination of technologies.
The following benefits were noted and apply equally well to non-DGX-1 scenarios:

• Ease-of-Use. Developers and data scientists can transparently access data from any
container.

• Speed. The joint solution delivered 10x faster performance than traditional GPU-based
deep learning training.

• Flexibility. Customers can choose from a variety of multi-tenant data access combinations,
accessing data either directly in the cluster or across environments.

• Future-proof architecture. Customers can leverage this reference architecture for
additional deep learning workloads as GPU technologies evolve.

MapR Data Fabric for Kubernetes

PAGE 19

The Kubernetes ML/DL Ecosystem
Kubernetes offers, out of the box, several important features that facilitate the machine
learning process. However, your use of Kubernetes for machine learning can be enhanced
by taking advantage of one or more of the many specialized tools or platforms available.

Note that the Kubernetes ecosystem has exploded since the project’s launch and continues
to grow at a rapid pace—a testament to the project’s success. The ecosystem map below,
and the descriptions that follow, present just a few of the many projects worth exploring for
machine learning and deep learning workloads.

Kubernetes Machine Learning & Deep Learning Landscape

Figure 8. The Kubernetes ML/DL ecosystem.

To
ol

s

Kubernetes Machine Learning & Deep Learning Landscape

D
at

a
Co

m
pu

te
Co

ns
um

pt
io

n

Hyperparameter Optimization Model Serving Pipeline Workflow

Device Support Container Run Time Provisioning

Pl
at

fo
rm

ML/DL Platforms

Data Management Cloud-Native Storage

Public Cloud IaaS Managed Kubernetes-as-a-Service Distributions

Google Container
Engine (GKE)

Templates

MLT

�����
�����������������

VMware
Kubernetes Engine

Charmed Distribution of

Kubernetes

Kubernetes Distributions and GPU Support
GPU support is critical for deep learning applications. Kubernetes has supported managing
NVIDIA GPUs since version 1.6, though this support was experimental and unsupported by
NVIDIA.

Starting with version 1.8 of Kubernetes, the recommended and supported way to consume
GPUs is through the device plugin framework. A number of device plugins for ML/DL users
exist but most notable is the NVIDIA GPU device plugin. Plugins for AMD GPUs, Intel GPUs
and FPGAs are also available.

Upstream Kubernetes refers to the official community-supported Kubernetes project, but
several other vendor-supported Kubernetes distributions have been developed. In fact, the
Pick the Right Solution page in the Kubernetes documentation lists nearly 50 offerings.

Recently announced, and of particular interest to deep learning users is “Kubernetes on
NVIDIA GPUs” by NVIDIA. This distribution was created to offer better, self-contained support
for NVIDIA hardware on Kubernetes, and is the preferred Kubernetes distribution for NVIDIA’s
servers and the NVIDIA GPU Cloud.

Figure 9. Kubernetes on NVIDIA GPUs

Kubernetes on NVIDIA GPUs exposes fine-grained GPU attributes such as memory and compute
capability to the Kubernetes scheduler, and provides an integrated GPU monitoring stack.

As is often the case with vendor distributions, the disadvantage of the Kubernetes on NVIDIA
GPUs distribution is that it lags behind upstream Kubernetes and thus may not offer the latest
Kubernetes features.

PAGE 20

PAGE 21

Useful Tools

Argo (argoproj.io) is a Kubernetes-native workflow engine. Originally designed
to support CI/CD pipelines, Argo workflows are well-suited to manage different
aspects of the machine learning process.

Each step in an Argo workflow is a container. Workflows can be defined as a simple sequence
of steps or a directed acyclic graph (DAG) that captures the dependencies between tasks.
Argo workflows support advanced control structures such as loops, conditionals, and recursion.
Timeouts, retries, and resubmits are supported for running workflows, as are workflow
suspension, resumption and cancellation.

While Argo workflows can automate various steps in the machine learning process, it is
particularly well suited to pull the different pieces of the puzzle together to support end-to-
end machine learning.

Consider a retailer updating its content-based recommendation system whenever new catalog
and pricing data are available. Argo sensors can determine when new data is available and
dependencies can ensure that both sets of data are ready before triggering the workflow.
The workflow includes a job (container) that performs batch scoring, another that uploads
the new scores to the production database, and a third that archives the input data.

The Argo project is open source, supported by Intuit, and is used by major companies including
Adobe, BlackRock, Datadog, Google, and Nvidia.

Pachyderm (pachyderm.io) is an open-source project that lets users deploy
and manage multi-stage, language- and framework-agnostic data pipelines.
In this regard, it can be thought of as a workflow system (i.e. like Argo) but
with specialized features for data pipelines. It can also act as a data repository
or data lake where users can collect and process large datasets.

Pachyderm, like Argo, defines workflows as DAGs. Also like Argo, each step in a Pachyderm
pipeline is a container, allowing users to use and combine their tools of choice for the problem
at hand. Pachyderm can run data processing jobs in parallel, automatically sharding, or
partitioning, data across running jobs as needed. Pachyderm makes use of Kubernetes to
ensure that data is processed by nodes with the right capabilities (e.g. RAM or GPUs) and to
auto-scale the number of workers running at any given time.

PAGE 22

Pachyderm is marketed as a “git for data science.” All data that flows into and out of each
step in a Pachyderm pipeline is versioned.

Data transformation, model training, model storage, and model scoring can be integrated into
a single Pachyderm pipeline. This provides an historical record that tracks what models were
invoked, what data is passed to them, and what results they produce. When new training data
is committed to Pachyderm, a model update can be automatically triggered. If the new model
degrades system performance once deployed, it may be rolled back to a previous version.

A web-based user interface is provided for users of Pachyderm’s Enterprise product.

Katib (https://github.com/kubeflow/katib) is an open-source hyperparameter tuning project
inspired by Google’s internal black-box optimization service, Vizier. Katib is framework agnostic
and tightly integrated with Kubernetes, to which it deploys optimization tasks as pods.

Katib, as in Google Vizier, organizes optimization tasks around studies, trials, and suggestions.
A study is a single optimization run described by a fixed objective function, the parameter
space over which optimization will take place, as well as a set of trials. A trial is a list of
parameter values that will lead to a single evaluation of the objective function. Trials are
automatically generated by Katib as suggestions, based on supplied algorithms, including
random search, grid search, Hyperband, and Bayesian optimization.

Each trial in Katib is run as a Kubernetes pod, as are the services that generate suggestions.
Trials can be run in parallel up to a number of concurrent jobs specified by the user.

A web-based dashboard, integrated with Google’s TensorBoard visualization package, is
provided.

Katib is included in Kubeflow (see below) but maintained separately by developers from NTT
and Shanghai Jiao Tong University.

Seldon Core (http://seldon.io) is an open source platform for deploying
machine learning models on Kubernetes. It is exclusively focused on model
serving and inference; it does not provide any support for the training phase
of the machine learning process.

Seldon Core supports serving models built with a wide variety of machine and deep learning
tools and technologies such as Python’s scikit-learn, TensorFlow, PyTorch, Spark, H2O, R,
ONNX, and PMML.

To deploy a model to Seldon Core, developers wrap it using provided Python, R, or Java
wrappers. A provided tool is then run to expose REST or gRPC interfaces and encapsulate
the model in a Docker container. A Seldon deployment manifest (itself a Kubernetes custom
resource written in YAML) is then created to describe the resources required to serve up a
prediction service using one or more models. The deployment manifest can then be deployed
using standard Kubernetes tools.

Decision services in Seldon Core can be based on simple model calls or complex runtime
inference graphs. This allows real-time routing of requests (e.g. for running model A/B tests),
combining responses from sub-graphs (e.g. for ensembles of models), and transformation
of model request or response data.

Full-lifecycle management of deployed models is provided, including zero downtime updates,
auto-scaling, logging and monitoring.

Higher-Level Platforms
A number of projects offer high-level machine and deep learning platforms running on top
of Kubernetes. A few interesting examples include:

Kubeflow (kubeflow.org) is an open source project that runs on top of
Kubernetes. It is sponsored by Google and inspired by TensorFlow Extended,
or TFX, the company’s internal machine learning platform.

Kubeflow integrates services already used by ML and DL developers to make them easier to
deploy and use anywhere that Kubernetes runs, from a developer laptop to a production
cluster. The project includes support for Jupyter Notebooks, distributed training (for Tensorflow,
PyTorch, MXNet and Chainer models, hyperparameter tuning (using Katib, model serving
(using Seldon Core), workflows (using Argo), and more.

Kubeflow exposes Kubernetes concepts like namespaces to users and requires that they use
standard Kubernetes tools to perform tasks like configuring and submitting jobs. As a result,
it is more geared towards users with engineering skill sets, rather than those of the typical
data scientist.

Using Kubeflow allows sophisticated Kubernetes shops to save time integrating support for
common ML and DL components. However, the project is immature and moving quickly,
which may cause problems for some organizations. Enterprise IT organizations might find
that the project lacks an adequate security and governance framework that spans workloads
and data.

PAGE 23

RiseML (riseml.com) provides a higher level of abstraction for training
and running ML workloads on Kubernetes clusters.

With RiseML, users can think in terms of experiments that train a model. A RiseML ‘experiment’
refers to a single instance of your model with its associated architecture, training data, and
parameters. RiseML takes care of executing these experiments on the infrastructure in a
robust manner, including deciding which nodes specific parts of an experiment are run on.
Launching an experiment is as simple as executing the riseml train command.

RiseML supports all major deep learning frameworks such as TensorFlow, Keras and PyTorch.
Arbitrary frameworks can be used by specifying custom Docker images for experiments.
Enhanced integration is provided for TensorFlow, allowing users to specify the version used,
add a Tensorboard to experiments, and use distributed TensorFlow.

Simple automated hyperparameter tuning is offered based on grid search, and support for
distributed TensorFlow training is provided. Additionally, auto-scaling support is provided on
AWS.

Basic user management is provided allowing administrators to secure the system at the
cluster level.

RiseML does a nice job of hiding the complexity of Kubernetes from data scientists. However,
the fact that it is closed source and currently offers limited capabilities are drawbacks.

Polyaxon (polyaxon.com) is marketed as an open source platform for
building, training, and monitoring large scale deep learning applications. It
relies on Kubernetes under the covers to manage cluster resources, launch
and manage containerized workloads, and scale up and down as needed.

Like RiseML, Polyaxon is generally organized around the concept of experiments. A nicely
organized conceptual hierarchy is provided consisting of:

• Experiments. A single execution of your model with a provided set of data and
parameters.

• Experiment groups. A versioned collection of experiments run using different
hyperparameters.

• Projects. The top-level organization concept for your efforts around a specific problem.

Experiments are deployed to the cluster as pods called Experiment Jobs, and Distributed
Experiments are supported for TensorFlow, PyTorch and MXNet. Generic Jobs, which are run
on the cluster but not tracked and managed as experiments, can be used for data processing
or other operations.

PAGE 24

PAGE 25

Figure 10. Polyaxon is organized around the concept of experiments,
which are deployed to Kubernetes as jobs.

Polyaxon offers the same algorithms as Katib for hyperparameter tuning: grid search, random
search, Hyperband, and Bayesian optimization. Unlike Katib, support for early stopping (a
technique included in the Vizier paper) is included. High-level experiment and experiment
group tracking APIs allows data scientists to log experiment parameters, code versions,
metrics, and outputs from running machine learning code–both within and outside of a
Polyaxon deployment.

First-class support is provided for running Jupyter Notebooks at the project level, and
TensorBoards at the project, experiment group, or experiment level.

Two-tiered user management is provided and access controls can be attached at the project
and experiment levels, with more robust team support on the roadmap.

While the project’s functionality and documentation are quite impressive, Polyaxon is a small
player in this space and appears to be the personal project of a single developer.

IBM Fabric for Deep Learning (https://github.com/IBM/FfDL) recently
announced its Fabric for Deep Learning (FfDL, pronounced “fiddle”). FfDL is
open sourced from the core code that powers the deep learning service
within IBM’s commercial Watson Studio offering.

FfDL uses a microservices architecture deployed as pods on Kubernetes. Support is provided
for TensorFlow, PyTorch, Caffe/Caffe2, and Keras; arbitrary containerized deep learning
frameworks are supported without modification. Existing modes are typically trainable without
code changes, though some may be required for distributed training. A REST API is provided
for programmatically managing the environment.

In terms of level of abstraction, FfDL sits somewhere between Kubeflow and something like
RiseML or Polyaxon. FfDL offers distributed training for deep learning models across the
Kubernetes cluster. A component called the Lifecycle Manager constructs and deploys
containerized training workloads and supports pausing and terminating training jobs. Auto
allocation and deallocation of compute resources is supported on IBM Cloud.

A Training Data Service automatically manages, tracks, and stores training history and artifacts.
Experiment results are loaded into a managed Elasticsearch instance for search and analysis,
and may be used for billing/chargeback purposes by organizations using FfDL as the basis
for internal or external service platforms.

Some notable gaps exist in the FfDL offering. For instance, support for launching Jupyter
Notebooks in the environment is not well documented. Support for model serving via Seldon
Core is documented, but is a manual process.

In addition to traditional documentation, FfDL is also the subject of several IBM Research
papers exploring its operating characteristics.8, 9, 10

PAGE 26

Case Studies
Booking.com
Booking.com is one of the largest travel e-commerce sites, offering travelers over 1.4 million
properties in over 220 countries with accommodation options ranging from luxury resorts to
igloos. The company uses machine and deep learning models to solve a variety of business
problems, including recommendations, image understanding and tagging, translation, and ad
optimization.Booking.com chose Kubernetes upon which to build its internal machine learning
processes for the elasticity, flexibility, and resource isolation it provides.11

Teams at Booking.com deploy training jobs running standardized base container images that
provide support for their frameworks of choice, such as TensorFlow, Torch, and VowpalWabbit.
To avoid the need for data scientists to containerize their model training routines, these base
images fetch the training code from git and initiate training on startup.12

Persistent volumes managed by Kubernetes allow training pods to access data in Booking.
com’s Hadoop cluster. During training, the pods stream log entries back to Hadoop. Upon
completion, the trained model is exported out to Hadoop as well. Kubernetes allows training
pods to target CPU or GPU nodes as required.

Booking.com also relies on Kubernetes to support serving predictions for model inference.
Prediction microservices are deployed as stateless microservices running a common containerized
codebase.

Prediction pods pull trained models from Hadoop, loading them into the running container’s
memory, and exposing them via a REST API which clients can access for predictions. Kubernetes’
built-in ability to probe the container for readiness, and, once ready, add the container to the
appropriate load balancer pool, significantly simplifies operations.

Figure 11. Serving model predictions at Booking.com

Allowing containers to fetch training code and trained models upon startup allows Booking.
com to keep images small and fast, and avoid image sprawl.

The company credits Kubernetes’ elasticity, self-service, GPU support, and ability to intelligently
schedule workloads with helping them run their compute- and data-intensive, hard to
parallelize, machine learning models at scale.

PAGE 27

PAGE 28

Using Kubernetes, Booking.com has been able to grow their use of machine learning models
to serve predictions and recommendations to their customers on a mass scale, serving more
than 400 million visitors a month.

OpenAI
OpenAI is a non-profit research company whose long-term goal is to ensure that the benefits
of AI are as safely and widely distributed as possible. OpenAI is at the forefront of AI research,
employing a full-time staff of 70 researchers and engineers who apply a variety of machine
and deep learning techniques to develop flexible algorithms that can solve more than one
type of problem.

OpenAI uses Kubernetes to provide the agility, flexibility and scale its teams require. To
support its large scale experiments, OpenAI runs several Kubernetes clusters, with some in
the cloud and some on bare-metal local hardware.13

Its largest reported cluster consists of 2,500+ nodes running in the Microsoft Azure cloud.
This cluster runs a combination of CPU-only nodes (20-core D15v2 instances with 140 GB of
RAM) and GPU nodes (NC24 instances with 24 CPU cores, 4 NVIDIA K80 GPUs and 224 GB
of RAM). The company also runs similarly large clusters on AWS and Google Cloud Platform.

Figure 12. OpenAI uses Kubernetes to abstract infrastructure and enable
workload portability across environments

The workloads deployed to OpenAI’s Kubernetes clusters are primarily focused on batch
training for its Python-based TensorFlow deep learning models. OpenAI takes advantage of
pre-packaged Docker containers provided by Anaconda. These incorporate all of the
dependencies required for their workloads, including difficult to install packages like OpenCV,
and provide performance-optimized versions of select scientific libraries.

OpenAI infrastructure teams provide researchers with custom tooling that allows them to
transparently deploy code from their laptop development environments to a standardized
Docker container image.

According to OpenAI, its batch jobs are bursty and unpredictable. A research project can
quickly scale from an exploratory single-machine effort, to a large-scale training job running
on thousands of cores. For this reason, the company relies heavily on autoscaling to dynamically
scale up and down cloud-based clusters as needed. This helps them keep the costs associated
with idle nodes low while still supporting the ability to iterate quickly without having to be
concerned with infrastructure configuration.

To overcome some of the deficiencies of Kubernetes’ built-in autoscaling when working with
large batch jobs, OpenAI developed and open-sourced the kubernetes-ec2-autoscaler project.
The custom autoscaler runs as a normal pod and takes advantage of the ability to query the
master for the entire state of the cluster. It then calculates the required cluster resources in
a way that works best for their jobs and issues the appropriate requests to EC2.

OpenAI takes advantage of a variety of built-in and open-source tooling for supporting
Kubernetes and its workloads, and credits the system for helping maximize the productivity
of its deep learning researchers, allowing them to focus on their science and not on their
infrastructure.14

“Research teams can now take advantage of the
frameworks we’ve built on top of Kubernetes, which make

it easy to launch experiments, scale them by 10x or 50x,
and take little effort to manage.”

CHRISTOPHER BERNER,
HEAD OF INFRASTRUCTURE FOR OPENAI

PAGE 29

Getting Started
Meeting the infrastructure needs of machine and deep learning development represents a
significant challenge for organizations moving beyond one-off ML projects to scaling the use
of AI more broadly in the enterprise.

Fortunately, enterprises starting down this path need not start from scratch. The pairing of
container technologies and Kubernetes addresses many of the key infrastructure challenges
faced by organizations seeking to industrialize their use of machine learning. Together, they
provide a means for delivering scalable data management and automation, the efficient
utilization of resources, and an effective abstraction between the concerns of data scientists
and MLEs and the needs of those providing the infrastructure upon which they depend.

In addition to supplying many of the features required of a robust machine learning
infrastructure platform right out of the box, the open source Kubernetes project—with its
broad adoption, active community, plentiful third-party tools ecosystem, and multiple
commercial support options—also checks the most important boxes for executives and
business decision-makers investing in a platform for future growth.

As with any new technology, the best course of action is to research and understand your
requirements and options and start small, with an eye towards your anticipated needs. Your
exploration of Kubernetes can start with a “cluster” running on your laptop or a handful of
machines in the cloud, allowing you to experience and appreciate firsthand what it brings to
the table for your machine learning workloads.

Godspeed.

PAGE 30

1	 Andreij Karpathy, “Software 2.0,” Medium, November 11, 2017, https://medium.com/@
karpathy/software-2-0-a64152b37c35.

2	 Sam Charrington, “How ML Keeps Shelves Stocked at Home Depot with Pat Woowong,”
This Week in Machine Learning & AI, August 23, 2018, https://twimlai.com/talk/175.

3 Sam Charrington, “ML for Understanding Satellite Imagery at Scale with Kyle Story,”
This Week in Machine Learning & AI, August 16, 2018, https://twimlai.com/talk/173.

4	 Themis Mavridis, Pablo Estevez, and Lucas Bernardi, “Learning to Match,” arXiv [cs.IR],
https://arxiv.org/abs/1802.03102v1

5	 William Koehrsen, “Prediction Engineering: How to Set Up Your Machine Learning
Problem,” Towards Data Science, November 7, 2018, https://towardsdatascience.com/
prediction-engineering-how-to-set-up-your-machine-learning-problem-b3b8f622683b

6	 Steve Lohr, “For Big-Data Scientists, ‘Janitor Work’ Is Key Hurdle to Insights,” The New
York Times, August 17, 2014, https://www.nytimes.com/2014/08/18/technology/
for-big-data-scientists-hurdle-to-insights-is-janitor-work.html

7	 Norman Jouppi, et al., “In-Datacenter Performance Analysis of a Tensor Processing
Unit,” arXiv [cs.AR], https://arxiv.org/abs/1704.04760v1

8	 Bishwaranjan Bhattacharjee et al., “IBM Deep Learning Service,” arXiv [cs.DC], https://
arxiv.org/abs/1709.05871

9	 Scott Boag et al., “Scalable Multi-Framework Multi-Tenant Lifecycle Management of
Deep Learning Training Jobs,” Workshop on ML Systems at NIPS’17, http://learningsys.
org/nips17/assets/papers/paper_29.pdf

10	 Scott Boag et al.,“Dependability in a Multi-tenant Multi-framework Deep Learning
as-a-Service Platform,” arXiv [cs.DC], https://arxiv.org/abs/1805.06801

11	 Manuel Pais, “How Booking.com Uses Kubernetes for Machine Learning,” InfoQ, April
1, 2018, https://www.infoq.com/news/2018/04/booking-kubernetes-machine-learn

12	 Sahil Dua, “Putting Deep Learning Models in Production,” QCON London Presentation,
https://qconlondon.com/system/files/presentation-slides/qconlondon2018_ai_track_-_
session_1_-_qcon_london_2018.pdf

13	 Vicki Cheung et al., “Infrastructure for Deep Learning,” OpenAI Blog, August 29, 2016,
https://blog.openai.com/infrastructure-for-deep-learning/

14	 Sam Charrington, “Scaling Deep Learning on Kubernetes at OpenAI with Christopher
Berner,” This Week in Machine Learning & AI, November 12, 2018, https://twimlai.com/
talk/199.

Image Credits
Figure 1 adapted from Francois Chollet’s Deep Learning with Python (Manning, 2017.

Images depicting Booking.com, MapR, NVIDIA, OpenAI systems, and Polyaxon provided by
those respective companies.

PAGE 31

References

Copyright © 2018, CloudPulse Strategies. All Rights Reserved. CloudPulse, TWiML, and the CloudPulse Strategies and TWiML
logos are trademarks of CloudPulse Strategies, LLC.

This document makes descriptive reference to trademarks that may be owned by others. The use of such trademarks herein
is not an assertion of ownership of such trademarks by CloudPulse and is not intended to represent or imply the existence
of an association between CloudPulse and the lawful owners of such trademarks. Information regarding third-party products,
services and organizations was obtained from publicly available sources, and CloudPulse cannot confirm the accuracy or
reliability of such sources or information. Its inclusion does not imply an endorsement by or of any third party.

