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Introduction
In spite of all the hype, the reality is that you won’t need to do anything different for your 
company to benefit from AI. You won’t need to hire data scientists, you won’t need to collect 
any training data, and you won’t need to build any machine learning or deep learning models. 

It is already the case, and it will be increasingly true in the future, that AI technologies will 
power many of the products and services that your enterprise uses. Your enterprise will be a 
passive beneficiary of AI. 

These passive benefits, however, are a rising tide that floats every boat. They are undifferentiated—
your enterprise gets only what is available to everyone else in the marketplace—and, as a 
result, they are also undifferentiating. In other words, they won’t help your enterprise gain a 
competitive advantage among its peers. So, the question becomes: what will help your 
enterprise gain a competitive advantage?

Competing on Models
Achieving competitive advantage with AI requires a much more active approach. It is done 
by applying your enterprise’s proprietary data to solve your enterprise’s proprietary business 
problems through the creation of proprietary models. (When we refer to “Enterprise AI” in 
this ebook, we’re referring to this idea.) The benefits of such an approach can be significant.

Figure 1. Enterprise AI: Using proprietary data to create proprietary models that solve proprietary problems.

In a 2016 paper on The Netflix Recommender System, authors Neil Hunt (former chief product 
officer) and Carlos Gomez-Uribe (former VP of product innovation), reported: “over years of 
development of personalization and recommendations, we have reduced churn by several 
percentage points. Reduction of monthly churn both increases the lifetime value of an existing 
subscriber, and reduces the number of new subscribers we need to acquire to replace canceled 
members.” The authors estimated that “the combined effect of personalization and 
recommendations save[d Netflix] more than $1B per year.”1
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Another example of the advantage gained through proprietary models comes from a 2018 
TWIML interview2 with Jeff Dean, the head of Google AI. In explaining the impact of the 
company’s investment in machine learning models, Jeff cited the replacement of the complex, 
decades-old, phrase-based translation system used to power Google Translate with a system 
based on deep learning. Not only is the resulting system much simpler—a system of around 
500,000 lines of code was replaced with around 500 lines of TensorFlow code—but the 
performance gains in making this change exceeded the performance gains of the previous 
decades of work on the legacy system.

With examples like these, it’s no surprise that enterprises across a wide variety of industries 
are investing significantly in machine learning.

Enter the Model-Driven Enterprise
Enterprise AI represents a fundamental shift in both the technology and business landscapes, 
with an impact as significant as that of software itself.

Consider the impact traditional software has had over the past 30 years. Can you imagine an 
enterprise of any significance not depending on a huge amount of software? Now consider 
that Enterprise AI is at the dawn of a new age of software—“Software 2.0” as described by 
Andrej Karpathy, Director of AI at Tesla.

Software 2.0 refers to the idea that machine learning (i.e., Software 2.0) allows us to extract 
the rules for solving some problem in our business automatically from data we’ve collected 
about the problem. In other words, the modeling process automates the creation of software 
for us. This can occur in situations in which it would be very difficult for humans to identify, 
much less program, the complete set of rules that govern the solution to a particular problem. 

Figure 2. Classical programming vs. machine learning

The widespread adoption of Enterprise AI will have broad implications for businesses; so 
much so that we believe it will define a new wave of business productivity marked by what 
we call the Model-Driven Enterprise. 
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Consider again the role of software in the enterprise, and a few of the major technological 
and productivity shifts that it has enabled over the past 30 years.

•	 The process-driven 90s. The 90s saw the rise of the process-driven enterprise. During 
this period of time—which was marked by the widespread application of ideas like Six 
Sigma, Lean, and business process reengineering—enterprises reorganized themselves 
around their core processes, collected data about the execution of these processes, 
and used reports about this data to analyze and improve their performance. ERP systems 
and business intelligence (BI) tools were among the major enterprise technologies that 
supported this shift. The connection between data collection and process improvement 
was a highly manual one, with humans reviewing reports on a relatively infrequent basis 
(quarterly or monthly reporting cadences were not uncommon), applying fixed rules 
and intuition, and using the information gained to drive behavior changes.

•	 The data-driven 00s. With Y2K remediation efforts and the introduction of the euro 
leading to a boom in ERP deployment in the late 90s, widespread digitization of enterprise 
processes set the stage for a boom in the amount and quality of data collected by 
enterprises. At the same time, connectivity within and between enterprises became 
ubiquitous, and the web and mobile came into their own as channels for consumer 
engagement. Much of the data collected found its way into traditional enterprise data 
warehouses (EDWs) and eventually into alternatives like Hadoop. While improvements 
in software development methodologies and the introduction of frameworks like J2EE 
and .NET, along with the rise of tools like business process management systems 
(BPMS) and business rules engines, meant that more decisions could be made in 
software, developing these systems remained slow and risky. Humans remained central 
to most enterprise decision-making. “Big data” promised to decrease the time lag between 
insight and action, and was generally successful in getting this reduced from quarters 
and months down to weeks.

•	 The model-driven late 10s and 20s. In the current model-driven era, enterprises have 
the opportunity to tap into a fundamentally new source of value creation by putting all 
the data they’ve collected to productive use through the creation of machine learning 
models. These models will be deployed within a wide variety of software applications 
and systems. This will allow the machines that interact with customers and control 
back-office functions to make high-fidelity decisions instantaneously. Because these 
models are created by software through the training process, as opposed to via manual 
software development, innovation cycles are reduced to days or hours. The technology 
innovations supporting the shift to model-driven enterprises include deep learning 
frameworks like TensorFlow and PyTorch as well as a new breed of machine learning 
platform technologies designed to eliminate friction at various points of the model 
delivery process.
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Figure 3. The process-driven, data-driven, and model-driven eras in business

In this light, it becomes clear that Enterprise AI is much more than a fad, but the next logical 
step in a 50-plus year march of enterprise technology towards supporting improved business 
decision-making, faster innovation cycles, and improved business performance.

On Digital Transformation

Digital transformation (DX) is a hot topic today among enterprise business and 
technology leaders. In the context of the changing business/technology landscape, 
we can see that DX is the process through which enterprises adapt from one era 
to the next, in the direction of progress. In other words, DX is an ongoing process. 
As it becomes clear to enterprise leaders that becoming model-driven is in their 
future, DX will be the banner under which they undertake the journey.

Figure 4. Digital transformation is the ongoing evolutionary process 
through which the enterprise adopts new technologies
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Getting to Model-Driven
As models emerge as a significant source of proprietary business advantage, the ability to 
create and deliver them to production in an efficient, repeatable, and scalable manner becomes 
a critical competency.

Key Challenges
As is often the case with other emerging technologies, enterprises face people, process, and 
technology challenges in their endeavors to efficiently deliver machine learning models to 
production.

People
Enterprises face a variety of people-related challenges when implementing machine 
learning and AI. First is the scarcity and cost of experienced data engineers, data 
scientists, and machine learning engineers. Assuming the hiring hurdle is overcome, 
numerous organizational and cultural challenges await. Culture is a key factor in 
the productivity of enterprise machine learning organizations because the 
organization’s approach to problem definition, experimentation, priorities, 
collaboration, communication, and working with end-users/customers are all 
guided by organizational culture. The topic of building a strong culture for effective 
ML/AI is largely beyond the scope of this ebook, although we do return to it briefly 
in our concluding chapter, Developing Your ML Platforms Strategy.

Process
Developing and deploying models is a complex, iterative process with numerous 
inherent complexities. Even at small scales, enterprises can find it difficult to get 
right. The data science and modeling process is also unique (and difficult) in that 
it requires a careful balance of scientific exploration and engineering precision. 
Space must be created to support the “science” aspect of data science, but a lack 
of rigor and automation gets in the way of efficiency. The key is to apply rigor and 
automation in the right places, and there are many opportunities to do so, as we 
will see.

Technology
Technology—and its key role in allowing an organization’s people to execute its 
machine learning process more efficiently—is the central focus of this ebook. 
Technology without process is simply a tool, and while tools can be helpful, their 
value is incremental. Conversely, process without technology limits the efficiency 
and automation necessary to scale. It is only by supporting an organization’s 
people—its data scientists and ML engineers in particular—with effective processes 
and technology, that they are empowered to efficiently apply ML models to extract 
value from enterprise data at scale.
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Driving Modeling Efficiency with ML Platforms
In order to help enterprise machine learning, data science, and AI innovators understand how 
model-driven enterprises are successfully scaling machine learning, we have conducted 
numerous interviews on the topic.3, 4

The key observation motivating and confirmed by these interviews is that organizations that 
have successfully scaled ML and AI share a number of characteristics in common. Most 
notably, they’ve all invested significantly in building out platform technologies to accelerate 
the delivery of machine learning models within their organizations. These efforts have resulted 
in making machine learning more accessible to more teams in the organization, ensuring 
greater degrees of consistency and repeatability, and addressing the “last mile” of getting 
models into production and managing them once they are in place.

It’s our belief that effective platforms are key to delivering ML and AI at scale. These platforms 
support data science and ML engineering teams by allowing them to innovate more quickly 
and consistently. 

So, what is a machine learning platform?

A machine learning platform is a set of tools and technologies (backed by a set of 
practices and processes) established by an organization to support and automate 
various aspects of the machine learning workflow, including data acquisition, feature 
and experiment management, and model development, deployment, and monitoring.

Machine learning platforms come in a wide variety of forms. Until recently, they have primarily 
been found at large technology companies, which have developed their platforms internally, 
out of necessity, to support increasingly significant investments in machine learning. As the 
importance of machine learning has become clear to a broader array of enterprises, new 
commercial and open source ML platform technologies have become available to reduce the 
barriers to adoption and make the benefits of ML models more accessible.

A fundamental premise of this ebook—and our broader AI Platforms research—is that 
enterprises should begin their ML platform journey by learning from the efforts of more 
experienced model-driven enterprises. Thus, to understand the capabilities and benefits 
available through ML platforms, we next take a look at the platforms established by several 
early adopters.
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ML Platform Case Studies
In this section, we present three representative ML platforms: Airbnb’s Bighead, Facebook’s 
FBLearner, and LinkedIn’s Pro-ML. Each of these platforms was developed in response to the 
unique situation, challenges, and considerations faced by its creator. As we will see, each 
platform took on a unique form as a result of these influences, while at the same time many 
common patterns are evident.

Airbnb’s Bighead
Machine learning has long been used to power Airbnb’s core accommodations marketplace 
with applications like search ranking, smart pricing, and fraud prevention. In 2016, only a few 
major ML models were in production and it typically took teams eight to twelve weeks to build 
new models. The Airbnb machine learning technology stack at the time was based on Spark, 
Scala, and a homegrown machine learning library called Aerosolve.

In 2016, the company’s engineering team realized that in order to meet its business goals, it 
would need to dramatically increase the velocity with which it was putting machine learning 
models into production. There was a growing desire on the part of Airbnb’s development 
teams to take advantage of rapidly evolving third party ML tools like TensorFlow, PyTorch, 
and SciKit Learn. They also experienced frustrating discrepancies between the results they 
were seeing in offline training and online serving, preventing them from meeting desired 
performance objectives and eroding confidence in their machine learning models.

To address these issues, Airbnb established an ML infrastructure team in 2017. The team 
describes its mission as eliminating the incidental complexity of machine learning—getting 
access to data, setting up servers, and scaling model training and inference, allowing developers 
and data scientists to focus on dealing with its intrinsic complexity—identifying the right 
model, selecting the right features, and tuning model performance. In establishing this team, 
they empowered more users to build ML products, reduced the time and effort required to do 
so, and produced more consistent results with the models they put into production.

Figure 5. Airbnb’s Bighead 
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Airbnb’s internal ML platform is called Bighead. Bighead is an end-to-end platform for building 
and deploying ML models that aims to make the machine learning process at Airbnb seamless, 
versatile, consistent, and scalable. It is built in Python and relies on open source technology 
like Docker, Jupyter, Spark, Kubernetes, and more. These open source components are 
customized and integrated for Airbnb’s specific needs. Like much of Airbnb’s technology 
infrastructure, Bighead runs in AWS. 

At the time of our interview, the platform was supported by an ML infrastructure team of 11 
engineers and one product manager. In the fall of 2018, Airbnb announced its plans to open 
source parts of Bighead and Zipline in early 2019, but this hasn’t yet materialized.

Bighead consists of the following major components:

Zipline
Zipline is a feature data management abstraction that sits in front of Airbnb’s data warehouse. 
Apache Spark powers many of its features, especially those performing offline tasks such as 
training set backfills and feature computation. Zipline allows Airbnb’s ML to more easily and 
consistently access feature data for ML models. It provides:

•	 A feature repository providing vetted crowdsourced features at different levels of 
granularity such as host, guest, listing, or marketplace5 

•	 An easy-to-use configuration language for defining new features

•	 Efficient point-in-time data backfills

•	 Feature exploration and visualizations

•	 Automatic data quality monitoring

•	 Consistency between feature availability for offline training and online scoring (batch 
and streaming)

•	 Explicit ownership of feature data pipelines

Airbnb has reported that Zipline has reduced the time that its ML practitioners spend collecting 
data and writing transformations for machine learning tasks from months to days.6 

Bighead Library
Bighead Library is the core execution management and data transformation library in Bighead. 
It allows users to define machine learning workflows for data preprocessing, training, inference, 
model evaluation, and visualization in a standard graph-based (i.e., directed acyclic graph, or 
DAG) format. Bighead Library pipelines are reusable, composable, and shareable. 

A variety of popular machine learning frameworks are supported in Bighead Library pipelines 
including TensorFlow, PyTorch, Keras, MXNet, Scikit-learn, XGBoost, H2O, R, and more.  
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In addition, Bighead Library provides a catalog of over 100 different canned transformations 
that can be applied to data in a variety of standard formats such as text or images, encouraging 
users not to “reinvent the wheel.”

Pipelines built with Bighead Library propagate feature metadata end-to-end so that users 
can understand feature provenance and visualize feature importance at the end of their 
pipelines.

Redspot
Redspot is a centrally managed, multi-tenant Jupyter Notebook service available to Airbnb’s 
machine learning practitioners. It is a fork of the official JupyterHub project that is tightly 
integrated with the rest of the Bighead ecosystem.

Redspot lets Airbnb’s ML practitioners use notebooks as first-class tools by providing easy 
access to data and pipelines, and allowing them to deploy notebooks all the way to production.

Every user’s environment in Redspot is containerized via Docker containers. This allows them 
to install systems or Python packages without affecting other users. Users can use vetted 
base images from Airbnb’s in-house image repository or create new images using provided 
build tools.

Redspot notebooks are version controlled, can be reverted to prior checkpoints, and can be 
easily spawned on dedicated AWS CPU and GPU instances. Notebooks and files are easily 
shared via AWS EFS.

Bighead Service
Bighead Service establishes the core modeling framework for Bighead and provides centralized 
model lifecycle management and experiment management services. It provides a single 
source of truth and history for models at Airbnb, whether they’re in development on a developer 
laptop, or running in a production cluster. 

Bighead Service keeps track of “Model Versions” consisting of the model’s code and a Docker 
image through which it can be run, and “Model Artifacts” consisting of a set of model parameters 
such as those learned via training. Instantiated Bighead models can be accessed via a 
lightweight standardized API baked into the various Docker images.

Bighead Service also provides a user interface for:

•	 Experimentation. Users can set up and track online model experiments.

•	 Evaluation. Users can access a dashboard of model metrics, visualizations, and alerts.

•	 Deployment. Users can track model changes, and deploy and roll back models.
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Deep Thought 
Deep Thought is a scalable serving environment for Bighead models. It is based on containers 
and Kubernetes, providing consistent development and training environments, runtime isolation, 
and scalability. It is completely configuration-driven so data scientists don’t need to involve 
engineers to deploy new models. Deep Thought exposes deployed models via APIs, and 
provides standardized logging and alerting accessed through Bighead Service dashboards. 
Models have access to feature data from Zipline.

ML Automator
ML Automator is a workflow engine that runs behind the scenes to automate common offline 
tasks in Bighead such as periodic model (re)training and evaluation, batch scoring, uploading 
scores, and creating dashboards and alerts based on scores. ML Automator users specify 
these tasks declaratively and ML Automator generates Airflow DAGs under the covers, 
specifying the appropriate connections to Bighead resources and Zipline data. Computation 
is run on Spark for scalability.

Facebook’s FBLearner
Machine learning is at the heart of many Facebook services including the newsfeed, ads, 
search, translation, speech recognition, and content understanding. The ubiquity of machine 
learning at the company is due in large part to a 2014 initiative that sought to re-envision its 
machine learning development process from scratch with the goal of putting state-of-the-art 
ML and AI algorithms in the hands of every engineer.

By mid-2016, the organization unveiled FBLearner Flow,7 what we now understand to be the 
first (and central) element of its broader ML-as-a-Service platform. FBLearner was designed 
with the guiding principles of reusability, scalability, and ease-of-use. At the time of its 
announcement, FBLearner had already had a profound impact at Facebook with approximately 
150 authors creating and publishing machine learning workflows. These workflows were used 
by over a quarter of the engineering team and generated over 6 million predictions per second. 
Today, most machine learning pipelines at Facebook are run via FBLearner. At the time of our 
interview, FBLearner and Facebook’s other AI Infrastructure initiatives were supported by a 
team of 17 people.

Figure 6. Facebook’s FBLearner8 
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FBLearner consists of these key components:

FBLearner Feature Store
FBLearner Feature Store is the component of the FBLearner platform that allows developers 
to discover and use pre-built features in their models.

Feature Store is essentially a catalog, or marketplace, of feature generators for use in both 
training and serving scenarios. Teams at Facebook can share, discover, and consume these 
features to accelerate the development of their models.

The feature generators offered in Feature Store expose data in the Facebook data warehouse 
in a consistent manner. Feature Store provides a rich type-system for describing this data, 
ultimately enabling many of the downstream features of FBLearner Flow. 

FBLearner Flow
FBLearner Flow is Facebook’s platform for building, training, and evaluating machine learning 
models. It is organized around three central concepts:

•	 Workflows. A workflow is a single pipeline defined within the FBLearner Flow system. 
Workflows describe the steps necessary to train or evaluate a specific model in FBLearner. 
The platform itself is agnostic to the type of ML algorithms used. Any engineer can write 
a workflow for their favorite algorithm and publish it to the entire team.

•	 Operators. Operators are the basic components from which workflows are composed. 
They are the smallest unit of execution in FBLearner. They have distinct inputs and 
outputs and run on a single machine. Operators are designed to be a very flexible 
abstraction. Generally, they are functions in a Python program, but essentially anything 
for which a binary can be provided can be turned into an operator.

•	 Channels. Channels represent the flow of data between operators within a workflow. 
They are characterized by their inputs and outputs and must have a well-defined type.

These concepts are implemented via three core components:

•	 A workflow authoring and execution environment. Workflows are defined in Python 
code with special, platform-specific extensions. Using these extensions, developers 
define graphs of operators and specify these operator’s parameters such as inputs, 
outputs, models, and evaluation metrics. Each operator declares its CPU, GPU, and 
memory requirements. At runtime, the number and type of input data are validated, 
workflows are parallelized for scalability, and they are scheduled to run on a slice of a 
machine that meets the requirements.

•	 An experimentation management dashboard. FBLearner Flow provides a user interface 
for launching and managing workflows and experiments, viewing and comparing 
experiment results, and deploying models to production. The metadata and results of 
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all workflow runs are stored and indexed, allowing engineers to easily find experiments 
via any number of parameters. The system supports complex hyperparameter sweeps 
for model tuning and provides visualizations to help developers determine the 
configurations that produced the best results.

•	 Predefined pipelines. Flow provides a library of user-contributed machine learning 
workflows as well as a set of scalable workflows maintained by the company’s AI 
Infrastructure team. The workflows can be applied to commonly used models like deep 
neural networks, gradient-boosted decision trees, support vector machines, and logistic 
regression.

FBLearner Predictor
After training, finalized models from FBLearner Flow are then deployed to production via 
FBLearner Predictor. Predictor provides a scalable, low-latency, multi-tenant model serving 
environment for online predictions based on live traffic. Using the integration between the 
Flow UI and Predictor’s model serving capability, users can run experiments in which multiple 
versions of live production models are deployed and compared.

Related work
Facebook’s ML platform engineering team has developed offerings for each layer of its machine 
learning stack. At the hardware level beneath FBLearner, they have created custom server 
designs (which they have open sourced via the Open Computing Project). At the framework 
level above FBLearner, they lead the development of PyTorch and are a leading contributor 
to the ONNX ecosystem for framework interoperability.

At the FBLearner level, Facebook has published only high-level descriptions of the system 
and its capabilities. Because of Facebook’s immense scale and unique internal systems it is 
unclear how much of FBLearner would generalize to third parties. Despite this, the broader 
ideas behind it continue to influence other systems and have certainly informed the other 
platforms and tools described in this ebook.

LinkedIn’s Pro-ML
Machine learning is in wide use at LinkedIn, powering everything from user-facing personalized 
news feeds and job recommendations to back-office functions such as advertising and sales 
lead generation.9, 10, 11 In order to empower LinkedIn’s disparate teams to use machine learning 
more efficiently and productively, the company established a platform engineering team 
whose primary product today is an internal machine learning platform: LinkedIn Pro-ML.12 

Pro-ML is the latest step in LinkedIn’s ML platform journey. As their platform team has 
developed and expanded, they have successively standardized and outgrown a number of 
platform technologies. Initially, LinkedIn began with a Hadoop-based platform, then moved 
to Apache Spark and MLlib. Later, they developed and open sourced their own MLlib replacement: 
Photon-ML. 
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In parallel with LinkedIn’s evolving technology stack, the platform team’s audience has also 
changed. The team initially catered to the company’s core set machine learning developers. 
However, as in-house efforts such as its AI Academy broadened the base of developers 
working with AI and ML, LinkedIn’s platform team stepped up to support the needs of this 
broader audience. Pro-ML is a suite of complementary systems that help streamline the 
model development lifecycle at LinkedIn. Pro-ML consists of:

Figure 7. LinkedIn’s Pro-ML
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Hadoop and Apache Spark provide the foundation for training models at LinkedIn with the 
former supplying distributed storage (via HDFS), and the latter providing the runtime platform 
for large-scale training and inference. LinkedIn developed and open sourced TonY (Tensorflow 
on YARN ) which helps effectively manage clusters running distributed TensorFlow.

Figure 8. A workflow-oriented view of LinkedIn’s Pro-ML

Deploying
LinkedIn’s production models can be very large and often need to be distributed over multiple 
machines to perform adequately. LinkedIn has developed workflows and tooling that ensure 
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models while ensuring a high quality of service for production systems.
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into production. It also provides the ability to perform model validation in a test environment. 
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Yet, while factors like team size, business models, technological maturity, available resources, 
and regulatory considerations vary among organizations and industries, there is much that 
can be learned from the platforms built by these early model-driven enterprises. 

Each of the platform features or components they’ve built points to a lesson they’ve learned 
about overcoming the obstacles to putting machine learning models into production and 
enabling greater throughput and effectiveness for their data scientists and ML engineers. 

By abstracting across the experiences of many early platform builders and users, and identifying 
the capabilities that we see frequently recurring in the platforms that they’ve built, we have 
identified a core set of platform capabilities. These capabilities, or requirements, for scaling 
machine learning in the enterprise are presented and organized here according to our high-
level model of the machine learning process. Notes associated with these capabilities provide 
additional context and examples from the open source and vendor ecosystems.

Figure 9. The machine learning process

While the typical company might not need the full set of capabilities that a Facebook or Airbnb 
has implemented, there is certainly much we can learn about operationalizing and scaling 
machine learning from their examples. 

Data Acquisition & Feature Management
Enterprise machine learning is made possible by the large and growing amount of data now 
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systems to access the data they need for their projects. As a result, any efforts resulting in 
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reuse across projects and teams.
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The line between the modern data warehouse and the data lake continues to blur. It is common 
to see systems based on the Hadoop ecosystem here, such as Apache Hive or Impala.  
For organizations all-in on cloud, common choices include a combination of cloud storage 
plus Amazon Redshift, Google BigQuery, or Microsoft Azure Cosmos DB, or Snowflake.  
For centralized access to distributed data, Alluxio is one of several available commercial 
solutions.

Repeatable data pipelines. Enterprise data rarely exists in the exact form or format required 
by data scientists for a given project. Rather, raw data must be processed through a series 
of transformations in order to cleanse and normalize it before it can be used for training. Once 
a model is put into production, this same sequence of transformations must be applied to 
the data to ready it for inference. 

Early in the exploratory phase of model development, these transformations are often applied 
in an ad hoc manner. However, manual transformations should give way to programmatically 
executed transformations very quickly, as the former are highly error-prone, not readily 
repeatable, and don’t scale. 

Automation via scripts or other programs can be a starting place, but more sophisticated 
scenarios are better supported by DAGs, which are in use supporting data pipelines at each 
of the organizations we’ve profiled. Apache Airflow is an open source workflow framework 
that supports DAGs and can be used to build data pipelines. Apache Spark is also frequently 
used for data pipelines. Pachyderm and DVC are startups with more full-featured open source 
offerings in this area.

Data labeling. Most ML in use today is supervised learning, meaning it requires labeled training 
data in order to work. Sometimes these labels can be extracted from existing data, but often 
the labels we need to support ML applications must be manually created. Labeling is often 
thought of as something that happens separately and before the machine learning process 
itself, but this is changing for several reasons. First, the collection of labeled data is very 
expensive, and integrating it into the ML process ensures that only the amount and type of 
data needed to meet the project’s goal is labeled. Perhaps more interesting is the increasing 
maturity of techniques like active learning and semi-supervised learning. These techniques 
place labeling squarely in the ML loop and use ML itself to determine which data to label. In 
any case, efficient labeling requires tooling customized to the data and labels for a specific 
problem.

Vendors offering software tools to facilitate labeling and annotation include Alegion, Figure 
Eight, Mighty AI, and Scale. These companies’ offerings include both annotation tools as well 
as the ability to manage labeling projects and external human labelers. Explosion AI’s Prodigy 
and Alectio (still in stealth at the time of this writing), offer tools based on active learning for 
increasing the data-efficiency of models.
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Feature repository. A given organization’s models often share the same or similar features. 
For example, many machine learning projects at a retailer will use features representing 
customers, products, orders, etc. Constructing a library of common features allows the 
organization’s data scientists and developers to avoid reinventing the wheel each time they 
want to incorporate these basic business entities into their models. Such a library or repository 
is often called a feature store, reflecting its role as both a storage facility for features, and a 
marketplace of sorts where users can share, discover, and consume new features. 

Back in 2017, Uber reported having over 10,000 features in the Michelangelo (its ML platform) 
feature store.13 Today, the feature store remains somewhat immature in practice, with few 
commercial or open source offerings available. As noted earlier, Airbnb announced its intent 
to open source Zipline, but hasn’t yet delivered on this promise. Google and GO-JEK (the $10 
billion Indonesian delivery and transportation startup) announced Feast,14 an open source 
feature store. Hopsworks15 by Logical Clocks is an open source, Hadoop-based end-to-end 
ML platform that includes feature store functionality. 

Feature provenance. Unlike the capabilities mentioned so far in this section, feature provenance 
isn’t so much a system. Rather, it’s the idea that with the right technology and processes in 
place—including centralized data, repeatable data pipelines, and a feature repository—it is 
possible to trace all the way back from a given inference or model to the feature data 
incorporated into the inference decision or the model’s training.

Pachyderm touts provenance as a key feature. Provenance also figures into a general set of 
model governance features in the ParallelM, an end-to-end ML platform recently acquired 
by DataRobot. Provenance16 also happens to be the name of a Python library that can track 
how and where artifacts such as models, features, or any object or file are used in an  
ML pipeline.

Backfills. Model development frequently results in new features being identified and created. 
These new features can involve complex and computationally expensive data transformations. 
In order to move these models into production and support fast inference, we often want to 
precompute, or backfill, the values of these features for our historical data, and store them in 
the data warehouse. The ability to programmatically perform backfills can help ensure that 
this is done in a repeatable and efficient manner. To date, we’ve not come across any dedicated 
tools focused on automating backfills. Workflow tools such as Apache Airflow can provide a 
useful framework for implementing your own programmatic backfills.17 

Data versioning. Achieving the highest levels of reproducibility and the ability to forensically 
analyze deployed models and their decisions requires being able to go back in time to determine 
the exact state of the training data at the time a model was trained.

Pachyderm and DVC, both mentioned previously, are specialized tools with robust data 
versioning capabilities. Several end-to-end ML platform offerings, notably Dotscience (still 
in stealth at the time of writing) and MissingLink also include data versioning capabilities.
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Experiment Management & Model Development
Data science is a scientific endeavor and requires experimentation in order to identify and 
optimize a predictive model. Managing these experiments via a software tool or system allows 
data scientists to get experiment parameters and results out of spreadsheets (or worse, file 
names, post-it notes, or their heads) and into a tracking system aiding repeatability, collaboration, 
optimization, and automation. The organizations we’ve profiled have all built robust experiment 
management and model development features into their platforms to allow data scientists 
to delegate repetitive aspects of model training and optimization to machines, freeing their 
time to focus on high-value creative activities. Here are some of the most common capabilities 
of these systems:

Experiment tracking and visualization. Machine learning model development is an inherently 
iterative process. The process of developing models typically involves running a series of 
experiments—hundreds or thousands are common—in order to identify the model types and 
parameters that result in optimal performance. Historically, the parameters that define each 
experiment—that experiment’s hyperparameters—are manually tracked by data scientists. 
This is done via any one of a variety of methods including using a lab notebook, document, 
spreadsheet, file and folder naming conventions, log files, etc. The experiment management 
features of modern ML platforms eliminate the burden and fallibility of manual tracking by 
programmatically logging the parameters and results of each test run.

With experiment parameters and results readily accessible, access to visual plots can be 
provided to allow data scientists to easily compare the performance of different model versions. 
These plots can be generated automatically as each experiment is logged and made available 
to data scientists via an experiment results dashboard.

Some degree of support for experiment management and tracking is included in most end- 
to-end ML platform offerings. In addition, a number of specialists exist as well. Comet, Neptune, 
and Weights & Biases all offer full-featured experiment management and visualization solutions 
via SaaS, with the latter specializing in deep learning. SigOpt18 pairs experiment tracking and 
visualization with enterprise-grade automated hyperparameter optimization (more below). 
Sacred19 is an open source tool for configuring, organizing, logging and reproducing experiments 
developed at IDSIA. TensorBoard,20 part of the TensorFlow ecosystem, has emerged as a 
popular open source tool for logging and visualizing experimental results. It can be used 
independently of the TensorFlow framework with a compatible logging library.

Model version control. In addition to tracking model parameters, trained models themselves 
can also be tracked across the model development lifecycle via a version control system. 
Versioning models allows data science and machine learning teams to more readily reproduce 
experiments and provides for greater consistency between prototyping and production 
environments.
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Models may be versioned by checking model code, serialized model objects (e.g. a Python 
pkl file), a model’s Docker container, or other model artifacts into a Git repository, ideally 
automatically at appropriate points in the modeling workflow. Most modern ML platform 
offerings support versioning models. Paperspace and Valohai are examples of startups whose 
platform products emphasize model versioning. Verta is a specialist in this area; the company’s 
founder created the open source ModelDB21 model management system while in graduate 
school.

Distributed training. For smaller ML models, training can be reasonably done on the data 
scientist’s desktop. As organizations begin working with more sophisticated models such as 
deep learning, training against larger and larger datasets, or enforcing more sophisticated 
data access controls, distributed training in a centralized environment becomes increasingly 
important. Distributed training frees up the data scientist desktop and provides a centralized 
nexus for management and control.

Many homegrown, commercial, and open source ML platforms rely on the open source 
Kubernetes container orchestration system for distributed training. For more details on how 
Kubernetes can be used to support data science—including a look at some representative 
tools such as the Kubeflow22 ML platform subproject—see the first ebook in our AI Platforms 
series, Kubernetes for Machine Learning and Deep Learning.23 

Automated feature generation. Feature engineering, the process of creating new features to 
train machine learning models, is historically the most challenging and time-consuming 
aspect of data science. At its heart, feature engineering involves iteratively applying a series 
of transformations and aggregations to existing data. Examples include generating derived 
features (such as calculating age from a birthdate) or converting categorical variables (such 
as transaction types) into one-hot encoded, or binary, vectors. Some of these operations are 
based on a data scientist’s experience, domain knowledge, and intuition. Others are really just 
the rote application of patterns that are common to a specific type of problem or data, and 
can thus be automated.

One technique for automated feature engineering, called Deep Feature Synthesis,24 was created 
at MIT’s Computer Science and Artificial Intelligence Lab (CSAIL) and is being commercialized 
by startup Feature Labs via the open source, Python-based Featuretools25 project. Automated 
feature generation is also commonly included as part of AutoML tools, to be discussed shortly.

Automated hyperparameter optimization. Complex models depend on many tunable 
parameters that must be optimized to maximize performance and accuracy. Rather than 
manually experiment with various combinations of values, automated hyperparameter 
optimization (HPO) tools systematically work to identify the optimal hyperparameters. HPO 
can use simple inefficient methods such as random or grid-based search of the hyperparameter 
space to look for optimum parameter values, or rely on more sophisticated techniques—like 
Bayesian optimization—to optimize parameters more efficiently. 
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Many end-to-end platforms include some kind of HPO capability, often based on one of the 
many26 open source hyperparameter tuning packages like Yelp’s MOE,27 SMAC,28 Skopt,29 
Katib,30 BayesOpt,31 Hyperopt,32 or Tune.33 SigOpt, built by the creators of MOE, SMAC and 
BayesOpt, provides a full-featured commercial solution for black-box hyperparameter 
optimization offering advanced features such as mixed parameter spaces, high hyperparameter 
dimensionality, asynchronous parallelization, multiple metrics,th and an API to enable the 
service.

AutoML. AutoML is a superset of automated feature generation and HPO that employs a 
variety of techniques to identify useful features and the best models and model architectures. 
In the case of relatively simple ML problems (e.g. classification and regression on tabular 
data), AutoML tools iteratively generate features and apply and optimize appropriate models 
and compare them against one another until a winner is found. For more involved problems 
such as deep learning, complex techniques such as neural architecture search and 
neuroevolution may be employed.

The term AutoML was arguably popularized by Google with a late 2017 New York Times PR 
coup34 followed by the release of Google Cloud AutoML Vision in early 2018. Google has since 
expanded its line of Cloud AutoML services35 to include AutoML Video Intelligence, AutoML 
Natural Language, AutoML Translation, and AutoML Tables. Software vendors DataRobot 
and H2O have mature software offerings targeting traditional machine learning use cases. 
For deep learning, the Determined AI end-to-end offering includes an AutoML feature based 
on neural architecture search.

Workflows. Throughout the training process, a number of experiments are run, artifacts 
created, and models evaluated. At scale, this creates a lot of busy work and opportunity for 
error, as data must be moved around and formatted appropriately for each step. Standardized, 
automated workflows are an important element of ensuring the efficiency and repeatability 
of training. 

The Apache Airflow project provides a strong foundation upon which to build and execute ML 
workflows. For Kubernetes users, Kubeflow provides a container-based solution with its 
Pipelines36 feature. End-to-end ML platform offerings typically have a strong notion of workflow. 
This can be an advantage for users just getting started but can pose problems for those with 
existing processes they’d like to automate. See the discussion on Wide vs. Deep platforms 
in the section, “Developing Your ML Platforms Strategy.”

Coding environment and standards. Clear standards around the type of models and frameworks 
supported by the platform and how models are to be coded are expedient. Jupyter Notebook 
is ubiquitous among those with a data science orientation, but those with more of an engineering 
background may prefer standard code modules and development tools. 

The open source Papermill37 project, developed and used at Netflix, allows users to parameterize 
and execute Jupyter notebooks. The team developing the popular Fast.ai deep learning library 
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used a similar technique in the development of its latest version: all code is developed in 
Jupyter notebooks and extracted upon code check-in. Startup Fiddler was founded to build 
a platform for machine learning that incorporates traditional IDE concepts such as debugging. 
Dataiku DSS allows models to be prototyped using a visual drag-and-drop interface.

Whatever the programming environment of choice, it is common to provide extensions to 
that environment to simplify tasks like data access and expose various features of the machine 
learning platform.

Framework support. Different organizations take different stands on the issue of how 
opinionated the ML platform should be. Some organizations believe that developers should 
be free to make whatever choices are best for their applications and that the platform should 
support all popular languages and frameworks. Others choose to provide deep support for a 
single framework (open source or internally developed), to the exclusion of others. Both 
choices are valid and depend on the goals and resources of the organization.

Airbnb, for example, is an organization whose platform team seeks to be framework  
agnostic. 38, 39 Twitter, on the other hand, has recently standardized on TensorFlow for the 
most recent version of its DeepBird deep learning platform.40 

Model Deployment and Performance Monitoring
The ultimate goal of our data science efforts is the creation of a model, right? Not exactly. 
The goal is a model put to productive use. This requires overcoming the “last mile” barriers 
to getting the model into production.

While most of the data science process is performed outside of the critical path of key business 
systems, models deployed as part of production systems are the opposite. They must be 
able to generate their predictions within time, reliability, and (in the case of edge deployment) 
power bounds appropriate for the systems in which they’re being deployed.

Because of the potential for differences between training data distributions and those of real-
world users/traffic, attention must also be paid to the way we introduce production traffic to 
new models. Further, models have a limited shelf life and must be continuously monitored 
for degradation. 

These needs and more can be met by the model deployment and management capabilities 
of ML platforms:

Model serving. A basic requirement of an ML platform is being able to serve models in a 
scalable and consistent manner. The organizations we’ve interviewed have typically addressed 
the need to support inference for multiple models with a single, multi-tenant environment to 
which any of the organization’s models can be deployed. Different organizations and platforms 
standardize on different types of model artifacts for deployment, including binaries, code, 
parameters, and full containers. Deployed models are often exposed as gRPC, REST, or 
messaging-based decision microservices via API wrappers. 
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Kubernetes is a popular choice for distributed inference environments due to its built-in 
container and microservice management features like routing, load balancing, and declarative 
autoscaling.23 Algorithmia’s AI Layer allows organizations to publish decision services using 
Git and Docker, deploy them to any cloud or on-premises infrastructure using Kubernetes, 
and manage their use down to the API call level. Seldon Core is an open source model serving 
framework for Kubernetes that is incorporated into platforms like Kubeflow, IBM Fabric for 
Deep Learning41 (FfDL), and Red Hat OpenShift. Cloud-based ML platform offerings like AWS 
SageMaker, Microsoft Azure Machine Learning, and Google AI Platform typically support 
one-click deployment of trained models.

Model instrumentation and evaluation. As previously noted, models are perishable. The 
statistical distribution of data that a model sees in production and that of the training data 
will tend to drift over time. This will cause model performance to degrade and, if this drift isn’t 
detected, can result in negative business outcomes such as lost sales or missed fraud. To 
prevent this, the model serving apparatus should provide a variety of ongoing monitoring 
capabilities. Ideally, basic monitoring should be applied automatically and transparently by 
the deployment platform, and engineers should be given tools or APIs that allow them to 
extend this to meet model- or application-specific requirements. Basic monitoring should 
include, at minimum, logging all scoring features and decisions for later analysis. Dashboards 
should collect and display model performance over time in both technical and business terms 
to simplify problem identification by both business and technical users.

Most platform offerings with support for deploying models also offer some type of visualization. 
Dataiku DSS, for example, provides dashboards and data validation policies for in-production 
models, allowing users to monitor model performance metrics, drift, data consistency, and 
more.

Model data validation. More sophisticated platforms continuously monitor the statistical 
properties of data seen by production models and compares these to the model’s reasonable 
operating range, as determined by the training data distribution. When drift exceeds a 
predetermined model tolerance, the system can take remediating action such as issuing alerts 
or flagging the model for retraining. Beyond statistical drift, many errors seen in production 
stem from a disconnect between the features expected by the deployed model, and those 
delivered by the production data pipeline. This is often the result of these subsystems being 
developed independently. The model deployment platform can play a role here by monitoring 
the presence, type, and statistics of features presented to the deployed model to assure that 
the model’s expectations are met.

There is an excellent discussion of data validation issues with production models in Data 
Management Challenges in Production Machine Learning42 by authors at Google.
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Phased deployments and online experiment management. Platforms can help ensure safe 
and effective model deployment by automating the implementation of phased deployments 
and the management of online experiments. These two share direct analogs with the deployment 
strategies DevOps teams have been refining to support the safe rollout of microservices. 
Blue-green testing allows for the quick rollback of new models that fail on deployment. Canary 
deployments allow for testing of new models with small amounts of traffic until they’re validated. 
And A/B testing allows for competing models to be tested on live traffic. All of these techniques 
rely on version-aware automated model deployment mechanisms, as well as load balancing 
and traffic management features provided by the platform.

For example, TensorFlow Serving, the model serving component of the TensorFlow Extended 
(TFX) platform, uses abstractions like sources, loaders, version policies, labels, and aliases 
to flexibly support arbitrary A/B testing and canary deployment schemes.43, 44 AWS SageMaker 
supports similar functionality using “endpoints.”45 

Batch scoring. Some applications require that developed models be used to score large 
amounts of data offline rather than scoring online via a microservice. If offline scoring needs 
to be done with regularity it may be integrated via the platform to help ensure that consistency 
requirements such as model version and data validation are met.

Airbnb’s ML Automator, for example, supports batch inference using a layer built on top of 
Apache Airflow and Spark.

Summary
In this section, we’ve reviewed several capabilities commonly provided by machine learning 
platforms. Next, we explore how to get started assembling your organization’s own ML platform.

Figure 10. Summary of ML platform capabilities
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Developing Your ML Platforms Strategy
So far we’ve discussed the importance of developing a model-driven orientation for your 
enterprise, and how that creates the need to be able to deliver models to production rapidly 
and consistently. We then explored some examples of the internal platforms that leading 
model-driven companies have developed to help them achieve this goal. From these, we 
identified a set of common capabilities that define the modern machine learning platform. 

The next question becomes: where do we go from here? How can you use this research to 
develop an actionable plan for building out your own enterprise machine learning platform? 
Or, more ambitiously, for helping your enterprise achieve model-driven excellence?

Here, we present seven steps or considerations that will help you develop your organization’s 
ML platform strategy. By documenting the application of these considerations to your enterprise, 
you will be well down the road towards articulating an ML platform strategy for your organization.

1. Know your why
Organizations that have deployed ML platforms cite a wide variety of benefits that help justify 
their investment. Conversely, by starting from the benefits that are most important to your 
organization, you will quickly get a better idea about which platform capabilities and 
characteristics will be most important for you. Here are a few of the benefits that come up 
most often:

•	 Abstraction. In small data science organizations, the same data scientists are responsible 
for all aspects of machine learning. As the organization matures, more specialized roles 
evolve and it becomes important to provide for a separation of concerns. At scale, for 
example, we don’t want data scientists or ML engineers dealing with setting up the 
infrastructure upon which their models are trained and run. These tasks are best handled 
by ML infrastructure specialists. Platforms provide a leverage point for enforcing this 
separation of concerns.

•	 Agility. Agility speaks to the speed with which an organization is able to innovate and 
adapt to changing needs or new trends. In a fast-changing, model-driven world, there 
are always more models needed than the organization has the capacity to produce. 
Furthermore, those models that have been developed tend to degrade over time. By 
accelerating their ability to get new models into production, ML platforms help enterprises 
become and remain more competitive.

•	 Automation. Many aspects of the enterprise machine learning process are well-defined, 
repetitive, and exacting. These are ideal candidates for automation, which helps ensure 
greater throughput and consistency. With repetitive tasks reliably delegated to the ML 
platform, data scientists and developers can focus their attention and intellect on the 
more valuable challenges of problem and solution definition.
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•	 Consistency or repeatability. Consistency and repeatability throughout training and 
production are key requirements for any mission-critical ML use cases and are key 
benefits offered by ML platforms. ML platforms can help ensure that the correct data 
is available to models both in training and in production, that the model in production 
is indeed the model the organization thinks is in production, and that the data seen in 
production is similar enough to the data that the model was trained against.

•	 Democratization. As organizations embrace the goals of becoming more model-driven, 
it can be expedient to widen the circle of individuals empowered to build machine 
learning models. ML platforms help democratize machine learning by hiding much of 
the incidental complexity of model training and deployment.

•	 Governability. In enterprise environments, governance requirements such as data 
security, privacy, reproducibility, explainability, fairness, and compliance will regularly 
come into play. Leaving it to each team or project to determine how to solve these 
problems is inefficient, wasteful, and goes against many of the fundamental tenets of 
governance. Your ML platform can provide a structure within which these teams can 
operate, helping to ensure greater governability.

•	 Performance. Models that perform well on a given task are the goal of a data scientist’s 
experimentation and the desired outcome of the modeling process as a whole. 
Performance is often the difference between a model that makes it into production and 
one that does not. By allowing teams to more easily find and access the data and 
features needed for models, automating model selection and hyperparameter tuning, 
and monitoring in-production models for performance degradation, ML platforms can 
help teams build and maintain high-performing models.

•	 Productivity. Because of the highly iterative nature of machine learning, each step in 
the process that can be accelerated or eliminated has a huge impact on cycle time and 
the ability of data scientists and developers to quickly get their models into production. 
ML platforms also reduce the cognitive load on data scientists and machine learning 
engineers, allowing them to focus on the aspects of the ML process that are most 
critical while delegating everything else to the platform. Furthermore, once they’ve 
determined the right way to tackle a particular problem, a platform allows them to 
automate the solution so that they no longer need to worry about it.

•	 Scalability. ML platforms help teams scale in many ways. They help them scale training, 
decreasing the amount of time it requires to produce a performant model, and inference, 
allowing applications to make more predictions more consistently. More importantly 
though, ML platforms help teams scale their own output in terms of the number of 
models they are able to produce in a given time, and their capacity to deliver and take 
advantage of machine learning. 
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•	 Visibility. Platforms help teams and managers gain much-needed visibility into machine 
learning models in development and production. They provide a centralized resource 
for collecting and sharing information on the data, features, experiments, and models 
that these teams work with so that insights about them can be more easily gained and 
shared.

2. Organize for success
Almost universally, the model-driven organizations that we’ve interviewed have established 
dedicated “ML platform” or “ML infrastructure” teams to help make their data scientists and 
ML developers more productive.

Setting up a platform team generally happens after there is a need for multiple data science 
efforts to be supported simultaneously. When this occurs, ML platform teams are established 
to drive efficiency and ensure that both scientists and developers have ready access to the 
tools and resources they need to work efficiently.

Airbnb, for example, established its ML infrastructure team as demand for ML models grew 
across a broad set of teams. The platform team’s mission is to eliminate what they call the 
incidental complexity of machine learning, as opposed to its inherent complexity, thus making 
machine learning more accessible to the company’s various developers.

While the establishment of ML platform or infrastructure teams is a trend that is just beginning 
within enterprises, most organizations have a recent internal example to look to. In many 
ways, ML infrastructure teams are to data scientists and ML developers what DevOps and 
developer platform teams are to traditional enterprise developers. Just as the latter have 
become a popular way to support software developers and ensure their productivity, so will 
the former be to their machine learning counterparts.

3. Understand your users
Once a platform team is established, its first task is to understand its users. Each of the 
platform’s potential users—researchers, data scientists, machine learning engineers, and 
software developers—will typically have different skill sets, needs, and tool preferences. 

Data scientists, to generalize, will be very comfortable with statistical tools and Jupyter 
notebooks but are often less comfortable with tools like version control systems that are 
commonplace in the software development world. Conversely, software engineers will be 
comfortable with a variety of crude command-line tools but might benefit from a system that 
offers them a selection of pre-built models to choose from. Whatever the mix, talking to the 
user community will help the team develop a direction, establish feature priorities, and come 
to terms with issues like how opinionated the platform should be.
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4. Consider build vs. buy
Organizations seeking to establish ML platforms for their data scientists and ML engineers 
should carefully consider their options before deciding to build a proprietary solution.

The “build” approach, while highly customized to the needs of the organization, is expensive 
and requires strong engineering talent and teams to develop and maintain the platform. The 
“buy” option, on the other hand, often requires adapting to a given vendor’s approach but 
demands less time and expertise on the part of the customer.

The reality is that “build” and “buy” exist on a spectrum. While Facebook, LinkedIn, and Airbnb 
have each invested in dedicated engineering teams to build and maintain their own proprietary 
ML platforms, in the case of Facebook’s FBLearner, the entire platform is largely built from 
scratch. At Airbnb, on the other hand, the company’s platform engineering team made liberal 
use of existing open source tools like Jupyter, Docker, Kubernetes, Airflow, and Spark in the 
creation of its platform. LinkedIn’s platform is arguably somewhere in the middle, based on 
many complex custom subsystems while taking advantage of the Hadoop and Spark 
ecosystems.

We believe most enterprises will ultimately compose their ML platforms from commercial, 
open source, or cloud-delivered software, along with custom integration and custom-coded 
modules as needed to address their unique needs.

5. Explore available solutions
As you may have gathered from the examples in the previous section, the machine learning 
tools market is growing quickly and there are many companies—startups and established 
vendors alike—that offer products and projects that may be of use to your organization as 
you build out your ML platform. So many, in fact, that the market can be quite confusing, with 
many of these vendors making similar and opaque claims. Understanding the market landscape 
will help you identify the right tools and prospective partners for your company.

Wide vs. Deep
One of the most interesting and important distinctions among the various tools available to 
help you build out your organization’s machine learning platform is whether the tool aims to 
be wide or deep:

Wide/Generalist Deep/Specialist

Wide refers to generalist tools that seek to provide 
end-to-end support for various aspects of the  
ML workflow. Wide offerings aim to give users 

a broad platform-in-a-box experience.

Deep refers to specialist tools that seek to 
solve one problem deeply. These tools typically 
have robust APIs and are designed to easily fit 
into an organization’s existing ML workflow.
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Figure 11. Wide vs. deep tools: pros and cons

Wide vs. deep presents both buyers and vendors with an interesting paradox. Specialist tools 
by their nature tend to assume that users have enough of a pipeline or platform in place that 
the tool is easily slotted-in and can quickly demonstrate value. Often, however, specialist tool 
vendors find that customers have broader gaps in their workflow that prevent them from 
taking advantage of the tool. As a result, these companies, often small startups, find that their 
sales cycles are longer than anticipated as they (or the buyer) work to fill workflow gaps with 
custom integration.This leads specialist vendors towards expanding their offerings to take 
on more of the end-to-end pipeline problem so as to more quickly demonstrate value in 
immature customer environments.

Generalist tools, on the other hand, face a different set of challenges. First, by the time a 
customer is mature enough in their data science journey that they’re ready to adopt an end-
to-end platform, they’ve often already invested in building out one or more pieces of their own 
workflow. These customers or their users are often not too excited about needing to start 
from scratch with an unproven tool and throw out everything they’ve done. Second, the end-
to-end problem is deceptively simple, but the existence of so many specialized vendors is an 
indication of the complexity, depth, and options inherent in many individual steps of the data 
science process. So the individual features of an end-to-end platform may not even be as 
capable, and are often not as tailored or differentiating, as the homegrown tools they seek to 
displace. Finally, as many vendors jump into the ring with shallow end-to-end offerings and 
aspirations to “own the data science pipeline,” end-to-end tools become increasingly 
commoditized. In order to differentiate, these tools will need to build depth or specialization 
in one or more individual areas in order to differentiate, thus heading in the opposite direction 
as the specialist tools.

Wide/Generalist Deep/Specialist

Pr
os

•	 Easiest way to establish an ML platform; 
quickest path to ML platform benefits

•	 Tightly integrated toolset requires little 
custom integration

•	 Common control plane simplifies 
management & governance

•	 One source for support

•	 Best-in-class functionality and/or 
performance 

•	 Flexible; coexists and easy to integrate with 
existing tools, workflows, and decision

•	 Greater control over the key decisions driving 
platform user experience

Co
ns

•	 Individual tools may be shallow in 
functionality or performance

•	 All-or-nothing; may have to abandon existing 
investments

•	 Beholden to vendor’s roadmap and priorities 
for enhancements and bug fixes

•	 Greater risk of lock-in

•	 Lacks unified management & governance
•	 Must be integrated with existing workflows/

systems
•	 Multiple vendor relationships to manage; 

end-user organization shoulders greater 
support burden

http://www.twimlai.com
https://twitter.com/twimlai
mailto:sam@twimlai.com


page 31|  twimlai.com  |  @twimlai  |  sam@twimlai.com

The result of this paradox is the increasingly confusing market in which we find ourselves 
today, in which everyone markets themselves as an end-to-end platform and it’s up to the 
customer to figure out if and where any depth exists. For example, DataRobot promotes itself 
as an end-to-end platform for all of the modeling roles in an organization (business analyst, 
data scientist, software engineer, etc.). Their strength, however, is in applying AutoML methods 
to modest-sized tabular datasets for business analysts and “citizen data scientists.” They 
lack many of the requirements to support large-scale custom model development in the 
enterprise, however, and don’t offer robust support for deep learning. 

Meanwhile, the open source TensorFlow Extended (TFX) project by Google is similarly marketed 
as an end-to-end machine learning platform. In reality, it is a collection of special-purpose 
modules (TensorFlow Data Validation, TensorFlow Transform, TensorFlow Model Analysis, 
and TensorFlow Serving) that can be used—along with other open source technologies like 
Apache Airflow or Kubeflow Pipelines for pipeline orchestration and Apache Beam for distributed 
processing—to build a custom platform for TensorFlow models and developers.

Hopefully, in this discussion, it is clear that wide vs. deep should not be equated to good vs. 
bad or vice versa. Rather, what’s important is to realize that different technologies have different 
aims and that each organization will need to identify the best fit for its needs and choose 
accordingly. 

Wide vs. deep is an important distinction, but far from the only one. Other important 
considerations include:

•	 Target use case. Understanding the intended use case for a given tool is key to 
understanding how and where to best apply it. For example, Falkonry and Reality AI 
both offer modeling tools targeting manufacturing and industrial use cases. The former 
focuses on predictive operations applications while the latter targets embedded AI 
systems with a wide variety of sensor connections.

•	 Target user profile. The needs and preferences of a business analyst vs. data scientist 
vs. ML engineer vs. platform engineer can vary widely. Different tools cater to different 
types of users in the decisions they make and features they offer. (See point 3, “Understand 
your users,” above). 

•	 Target model type. Platforms differ on the types of models that they target and support. 
For example, some platforms target traditional ML model types while others target deep 
learning. While they’ve since broadened their footprint, BigML originally only supported 
decision trees and random forests as model types. Some platforms are even more 
specific, targeting models built using a specific framework. TensorFlow Extended (TFX) 
is an example. Others target a specific use case. For example, Allegro and Neurala are 
platforms designed to help users create computer vision models.
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•	 Tool history/legacy. Two similarly marketed tools can take very different approaches, 
often informed by the founders’ backgrounds or the company’s technology legacy. For 
example, Dotscience, a startup mentioned previously, was founded by Luke Marsden 
who previously founded ClusterHQ, a company focused on containerized storage 
systems. As a result, while their tool is marketed like other end-to-end ML platforms, 
its strength is in data versioning and snapshotting. 

	 Paperspace’s end-to-end platform offering, on the other hand, grew out of an acquisition 
of a team whose roots were in building CI/CD systems on top of Kubernetes. As a result, 
their view of the world is very software engineer centric. Examining the origins of a given 
tool and team can help with understanding the tool’s best application and use-case.

•	 Open vs. closed source vs. SaaS vs. cloud. ML platforms are delivered in a wide variety 
of formats, including open and closed source software that teams can run in their own 
datacenters, software that is supported running in any cloud, and SaaS software, whether 
supplied by one of the large cloud vendors or an independent firm.

6. Learn from DevOps efforts
We’ve alluded to this point earlier in this ebook, but it’s worth reiterating here. Our efforts to 
industrialize and scale machine learning mirror in many ways the parallel evolution that has 
taken place in software development over the past decade and much can be learned from 
both the process and the result. 

Modern software development practices emphasize strong problem definition (user stories), 
tight iterative loops (sprints), high degrees of automation (CI/CD), high levels of repeatability 
(Docker containers), and robust platforms that provide developer services (PaaS) and manage 
the underlying infrastructure (container orchestration, Kubernetes). Of course, the analogy 
isn’t perfect and can be taken too far. Still, your organization likely has learned a lesson or 
two about providing platform services to teams of developers, and these lessons can be 
applied to supporting your data scientists as well.

7. Start small
It would be hard to overemphasize the evolutionary nature of ML platform development and 
deployment. None of the organizations we’ve profiled here, or any of the others that we’ve 
talked to, have deployed their machine learning platform in a single “big bang.” Rather, each 
organization’s ML platform evolved in a unique way based on its needs, users, skill sets, 
organizational structure, and existing technology investments. 

In this ebook we’ve identified a broad set of capabilities to be considered for supporting and 
accelerating machine learning in the enterprise. Your team does not need to build an entire 
end-to-end system for your efforts to be successful. Rather, teams should prioritize their 
efforts based on a careful analysis of your users’ specific needs and your organization’s ability 
to execute. Talking to your organization’s data scientists and ML engineers will likely yield a 
short-list of pain points that could be alleviated with off-the-shelf or custom-developed tools. 
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If your organization is new to data science, or you’re looking for general guidance on making 
data scientists more effective, we recommend reviewing Monica Rogati’s, Data Science 
Hierarchy of Needs46 below:

Figure 12. Data Science Hierarchy of Needs

Conclusions
We began this ebook with a discussion of the increasing importance of machine learning 
models to the enterprise. If you agree that AI, and ML models in particular, will help drive 
enterprise competitiveness in the future, then the premise of this ebook will not produce much 
of an argument: enterprises will need to put people, processes, and technologies in place that 
allow them to deliver ML models into production more efficiently, consistently, and scalably.

With this future as a backdrop, the importance of ML platforms becomes clear. Over the next 
few years, enterprises will deploy ML platforms in increasing numbers because they help 
make the benefits of machine learning more readily accessible at greater scale.

The ML platforms landscape is evolving rapidly. Awareness of the importance of ML platforms 
and the availability of solutions in this area has grown dramatically in the past year. We hope 
we’ve had a small part to play in this via our coverage of the topic on the TWIML AI Podcast.

To further support the development of an informed, sustainable community of technologists 
equipped to meet the current and future ML platforms and infrastructure needs of their 
organizations, we’re excited to host TWIMLcon: AI Platforms. This is the first conference of 
its kind to focus on practical ML and AI platforms and infrastructure. We are dedicated to 
creating a forum where data scientists, ML engineers, and platforms and infrastructure 
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practitioners, leaders, and innovators can share, learn, and connect with one another on the 
platforms, tools, technologies, and practices necessary to industrialize and scale the delivery 
of machine learning and AI in the enterprise.

We invite you to join us for two exciting days of practical presentations, lively discussion, and 
great community interactions. Learn more and register at twimlcon.com. 

Needless to say, our research in and coverage of this topic will continue. Be sure to visit 
twimlai.com/platforms to access additional content and resources in this area, including 
profiles of the vendors, products, and projects mentioned in this ebook. While you’re there 
you can also join our growing community of ML innovators working in this area.

Hope to see you soon!
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