
 THE DEFINITIVE GUIDE TO

Machine Learning
Platforms

By Sam Charrington
Founder, TWIML

Host, TWIML AI Podcast

SPONSORED BY

page 2| twimlai.com | @twimlai | sam@twimlai.com

Table of Contents

	 Introduction.. 3

	 Getting to Model-Driven... 7

	 ML Platform Case Studies... 9

	 Understanding ML Platform Capabilities............................ 16

	 Developing Your ML Platforms Strategy............................. 26

	 Conclusions.. 33

	 References.. 35

	 About This Week in Machine Learning & AI........................ 38

page 3| twimlai.com | @twimlai | sam@twimlai.com

Introduction
In spite of all the hype, the reality is that you won’t need to do anything different for your
company to benefit from AI. You won’t need to hire data scientists, you won’t need to collect
any training data, and you won’t need to build any machine learning or deep learning models.

It is already the case, and it will be increasingly true in the future, that AI technologies will
power many of the products and services that your enterprise uses. Your enterprise will be a
passive beneficiary of AI.

These passive benefits, however, are a rising tide that floats every boat. They are undifferentiated—
your enterprise gets only what is available to everyone else in the marketplace—and, as a
result, they are also undifferentiating. In other words, they won’t help your enterprise gain a
competitive advantage among its peers. So, the question becomes: what will help your
enterprise gain a competitive advantage?

Competing on Models
Achieving competitive advantage with AI requires a much more active approach. It is done
by applying your enterprise’s proprietary data to solve your enterprise’s proprietary business
problems through the creation of proprietary models. (When we refer to “Enterprise AI” in
this ebook, we’re referring to this idea.) The benefits of such an approach can be significant.

Figure 1. Enterprise AI: Using proprietary data to create proprietary models that solve proprietary problems.

In a 2016 paper on The Netflix Recommender System, authors Neil Hunt (former chief product
officer) and Carlos Gomez-Uribe (former VP of product innovation), reported: “over years of
development of personalization and recommendations, we have reduced churn by several
percentage points. Reduction of monthly churn both increases the lifetime value of an existing
subscriber, and reduces the number of new subscribers we need to acquire to replace canceled
members.” The authors estimated that “the combined effect of personalization and
recommendations save[d Netflix] more than $1B per year.”1

Proprietary
Data

Proprietary
Problems

Proprietary
Model

X !

?110010
010110

(High-value, differentiating)
Enterprise AI

http://www.twimlai.com
https://twitter.com/twimlai
mailto:sam@twimlai.com

page 4| twimlai.com | @twimlai | sam@twimlai.com

Another example of the advantage gained through proprietary models comes from a 2018
TWIML interview2 with Jeff Dean, the head of Google AI. In explaining the impact of the
company’s investment in machine learning models, Jeff cited the replacement of the complex,
decades-old, phrase-based translation system used to power Google Translate with a system
based on deep learning. Not only is the resulting system much simpler—a system of around
500,000 lines of code was replaced with around 500 lines of TensorFlow code—but the
performance gains in making this change exceeded the performance gains of the previous
decades of work on the legacy system.

With examples like these, it’s no surprise that enterprises across a wide variety of industries
are investing significantly in machine learning.

Enter the Model-Driven Enterprise
Enterprise AI represents a fundamental shift in both the technology and business landscapes,
with an impact as significant as that of software itself.

Consider the impact traditional software has had over the past 30 years. Can you imagine an
enterprise of any significance not depending on a huge amount of software? Now consider
that Enterprise AI is at the dawn of a new age of software—“Software 2.0” as described by
Andrej Karpathy, Director of AI at Tesla.

Software 2.0 refers to the idea that machine learning (i.e., Software 2.0) allows us to extract
the rules for solving some problem in our business automatically from data we’ve collected
about the problem. In other words, the modeling process automates the creation of software
for us. This can occur in situations in which it would be very difficult for humans to identify,
much less program, the complete set of rules that govern the solution to a particular problem.

Figure 2. Classical programming vs. machine learning

The widespread adoption of Enterprise AI will have broad implications for businesses; so
much so that we believe it will define a new wave of business productivity marked by what
we call the Model-Driven Enterprise.

Classical
Programming

Machine
Learning

Rules

Rules

Data

Data

Answers

Answers

http://www.twimlai.com
https://twitter.com/twimlai
mailto:sam@twimlai.com

page 5| twimlai.com | @twimlai | sam@twimlai.com

Consider again the role of software in the enterprise, and a few of the major technological
and productivity shifts that it has enabled over the past 30 years.

•	 The process-driven 90s. The 90s saw the rise of the process-driven enterprise. During
this period of time—which was marked by the widespread application of ideas like Six
Sigma, Lean, and business process reengineering—enterprises reorganized themselves
around their core processes, collected data about the execution of these processes,
and used reports about this data to analyze and improve their performance. ERP systems
and business intelligence (BI) tools were among the major enterprise technologies that
supported this shift. The connection between data collection and process improvement
was a highly manual one, with humans reviewing reports on a relatively infrequent basis
(quarterly or monthly reporting cadences were not uncommon), applying fixed rules
and intuition, and using the information gained to drive behavior changes.

•	 The data-driven 00s. With Y2K remediation efforts and the introduction of the euro
leading to a boom in ERP deployment in the late 90s, widespread digitization of enterprise
processes set the stage for a boom in the amount and quality of data collected by
enterprises. At the same time, connectivity within and between enterprises became
ubiquitous, and the web and mobile came into their own as channels for consumer
engagement. Much of the data collected found its way into traditional enterprise data
warehouses (EDWs) and eventually into alternatives like Hadoop. While improvements
in software development methodologies and the introduction of frameworks like J2EE
and .NET, along with the rise of tools like business process management systems
(BPMS) and business rules engines, meant that more decisions could be made in
software, developing these systems remained slow and risky. Humans remained central
to most enterprise decision-making. “Big data” promised to decrease the time lag between
insight and action, and was generally successful in getting this reduced from quarters
and months down to weeks.

•	 The model-driven late 10s and 20s. In the current model-driven era, enterprises have
the opportunity to tap into a fundamentally new source of value creation by putting all
the data they’ve collected to productive use through the creation of machine learning
models. These models will be deployed within a wide variety of software applications
and systems. This will allow the machines that interact with customers and control
back-office functions to make high-fidelity decisions instantaneously. Because these
models are created by software through the training process, as opposed to via manual
software development, innovation cycles are reduced to days or hours. The technology
innovations supporting the shift to model-driven enterprises include deep learning
frameworks like TensorFlow and PyTorch as well as a new breed of machine learning
platform technologies designed to eliminate friction at various points of the model
delivery process.

http://www.twimlai.com
https://twitter.com/twimlai
mailto:sam@twimlai.com

page 6| twimlai.com | @twimlai | sam@twimlai.com

Figure 3. The process-driven, data-driven, and model-driven eras in business

In this light, it becomes clear that Enterprise AI is much more than a fad, but the next logical
step in a 50-plus year march of enterprise technology towards supporting improved business
decision-making, faster innovation cycles, and improved business performance.

On Digital Transformation

Digital transformation (DX) is a hot topic today among enterprise business and
technology leaders. In the context of the changing business/technology landscape,
we can see that DX is the process through which enterprises adapt from one era
to the next, in the direction of progress. In other words, DX is an ongoing process.
As it becomes clear to enterprise leaders that becoming model-driven is in their
future, DX will be the banner under which they undertake the journey.

Figure 4. Digital transformation is the ongoing evolutionary process
through which the enterprise adopts new technologies

Process
Driven

Data
Driven

Model
Driven

Process-Driven Data-Driven Model-Driven

Use of Data
Enterprise organized around
relatively static processes

performed by humans

Incremental improvements;
data collected at different

points in processes

Data collected at each step
of processes used to train

next iteration of model

Decision-
Making

Fixed rules and intuition used
to make decisions

Data used by humans to make
more informed, better aligned,

and more timely decisions

Data used by machines to
make high fidelity decisions

instantaneously

Innovation
Cycles

Months to years Weeks to months Hours to weeks

Timeframe 1990s 2000s Late 2010s to 20s +

http://www.twimlai.com
https://twitter.com/twimlai
mailto:sam@twimlai.com

page 7| twimlai.com | @twimlai | sam@twimlai.com

Getting to Model-Driven
As models emerge as a significant source of proprietary business advantage, the ability to
create and deliver them to production in an efficient, repeatable, and scalable manner becomes
a critical competency.

Key Challenges
As is often the case with other emerging technologies, enterprises face people, process, and
technology challenges in their endeavors to efficiently deliver machine learning models to
production.

People
Enterprises face a variety of people-related challenges when implementing machine
learning and AI. First is the scarcity and cost of experienced data engineers, data
scientists, and machine learning engineers. Assuming the hiring hurdle is overcome,
numerous organizational and cultural challenges await. Culture is a key factor in
the productivity of enterprise machine learning organizations because the
organization’s approach to problem definition, experimentation, priorities,
collaboration, communication, and working with end-users/customers are all
guided by organizational culture. The topic of building a strong culture for effective
ML/AI is largely beyond the scope of this ebook, although we do return to it briefly
in our concluding chapter, Developing Your ML Platforms Strategy.

Process
Developing and deploying models is a complex, iterative process with numerous
inherent complexities. Even at small scales, enterprises can find it difficult to get
right. The data science and modeling process is also unique (and difficult) in that
it requires a careful balance of scientific exploration and engineering precision.
Space must be created to support the “science” aspect of data science, but a lack
of rigor and automation gets in the way of efficiency. The key is to apply rigor and
automation in the right places, and there are many opportunities to do so, as we
will see.

Technology
Technology—and its key role in allowing an organization’s people to execute its
machine learning process more efficiently—is the central focus of this ebook.
Technology without process is simply a tool, and while tools can be helpful, their
value is incremental. Conversely, process without technology limits the efficiency
and automation necessary to scale. It is only by supporting an organization’s
people—its data scientists and ML engineers in particular—with effective processes
and technology, that they are empowered to efficiently apply ML models to extract
value from enterprise data at scale.

http://www.twimlai.com
https://twitter.com/twimlai
mailto:sam@twimlai.com

page 8| twimlai.com | @twimlai | sam@twimlai.com

Driving Modeling Efficiency with ML Platforms
In order to help enterprise machine learning, data science, and AI innovators understand how
model-driven enterprises are successfully scaling machine learning, we have conducted
numerous interviews on the topic.3, 4

The key observation motivating and confirmed by these interviews is that organizations that
have successfully scaled ML and AI share a number of characteristics in common. Most
notably, they’ve all invested significantly in building out platform technologies to accelerate
the delivery of machine learning models within their organizations. These efforts have resulted
in making machine learning more accessible to more teams in the organization, ensuring
greater degrees of consistency and repeatability, and addressing the “last mile” of getting
models into production and managing them once they are in place.

It’s our belief that effective platforms are key to delivering ML and AI at scale. These platforms
support data science and ML engineering teams by allowing them to innovate more quickly
and consistently.

So, what is a machine learning platform?

A machine learning platform is a set of tools and technologies (backed by a set of
practices and processes) established by an organization to support and automate
various aspects of the machine learning workflow, including data acquisition, feature
and experiment management, and model development, deployment, and monitoring.

Machine learning platforms come in a wide variety of forms. Until recently, they have primarily
been found at large technology companies, which have developed their platforms internally,
out of necessity, to support increasingly significant investments in machine learning. As the
importance of machine learning has become clear to a broader array of enterprises, new
commercial and open source ML platform technologies have become available to reduce the
barriers to adoption and make the benefits of ML models more accessible.

A fundamental premise of this ebook—and our broader AI Platforms research—is that
enterprises should begin their ML platform journey by learning from the efforts of more
experienced model-driven enterprises. Thus, to understand the capabilities and benefits
available through ML platforms, we next take a look at the platforms established by several
early adopters.

http://www.twimlai.com
https://twitter.com/twimlai
mailto:sam@twimlai.com

page 9| twimlai.com | @twimlai | sam@twimlai.com

ML Platform Case Studies
In this section, we present three representative ML platforms: Airbnb’s Bighead, Facebook’s
FBLearner, and LinkedIn’s Pro-ML. Each of these platforms was developed in response to the
unique situation, challenges, and considerations faced by its creator. As we will see, each
platform took on a unique form as a result of these influences, while at the same time many
common patterns are evident.

Airbnb’s Bighead
Machine learning has long been used to power Airbnb’s core accommodations marketplace
with applications like search ranking, smart pricing, and fraud prevention. In 2016, only a few
major ML models were in production and it typically took teams eight to twelve weeks to build
new models. The Airbnb machine learning technology stack at the time was based on Spark,
Scala, and a homegrown machine learning library called Aerosolve.

In 2016, the company’s engineering team realized that in order to meet its business goals, it
would need to dramatically increase the velocity with which it was putting machine learning
models into production. There was a growing desire on the part of Airbnb’s development
teams to take advantage of rapidly evolving third party ML tools like TensorFlow, PyTorch,
and SciKit Learn. They also experienced frustrating discrepancies between the results they
were seeing in offline training and online serving, preventing them from meeting desired
performance objectives and eroding confidence in their machine learning models.

To address these issues, Airbnb established an ML infrastructure team in 2017. The team
describes its mission as eliminating the incidental complexity of machine learning—getting
access to data, setting up servers, and scaling model training and inference, allowing developers
and data scientists to focus on dealing with its intrinsic complexity—identifying the right
model, selecting the right features, and tuning model performance. In establishing this team,
they empowered more users to build ML products, reduced the time and effort required to do
so, and produced more consistent results with the models they put into production.

Figure 5. Airbnb’s Bighead

Feature Data Management: Zipline

Execution Managment: Bighead Library

Environment Management: Docker Image Service

Redspot
Bighead

Service/UI

Deep Thought

Production
Lifecycle

ManagementPrototyping

Real Time
Inference

Batch
Training +
Inference

ML Automator

http://www.twimlai.com
https://twitter.com/twimlai
mailto:sam@twimlai.com

page 10| twimlai.com | @twimlai | sam@twimlai.com

Airbnb’s internal ML platform is called Bighead. Bighead is an end-to-end platform for building
and deploying ML models that aims to make the machine learning process at Airbnb seamless,
versatile, consistent, and scalable. It is built in Python and relies on open source technology
like Docker, Jupyter, Spark, Kubernetes, and more. These open source components are
customized and integrated for Airbnb’s specific needs. Like much of Airbnb’s technology
infrastructure, Bighead runs in AWS.

At the time of our interview, the platform was supported by an ML infrastructure team of 11
engineers and one product manager. In the fall of 2018, Airbnb announced its plans to open
source parts of Bighead and Zipline in early 2019, but this hasn’t yet materialized.

Bighead consists of the following major components:

Zipline
Zipline is a feature data management abstraction that sits in front of Airbnb’s data warehouse.
Apache Spark powers many of its features, especially those performing offline tasks such as
training set backfills and feature computation. Zipline allows Airbnb’s ML to more easily and
consistently access feature data for ML models. It provides:

•	 A feature repository providing vetted crowdsourced features at different levels of
granularity such as host, guest, listing, or marketplace5

•	 An easy-to-use configuration language for defining new features

•	 Efficient point-in-time data backfills

•	 Feature exploration and visualizations

•	 Automatic data quality monitoring

•	 Consistency between feature availability for offline training and online scoring (batch
and streaming)

•	 Explicit ownership of feature data pipelines

Airbnb has reported that Zipline has reduced the time that its ML practitioners spend collecting
data and writing transformations for machine learning tasks from months to days.6

Bighead Library
Bighead Library is the core execution management and data transformation library in Bighead.
It allows users to define machine learning workflows for data preprocessing, training, inference,
model evaluation, and visualization in a standard graph-based (i.e., directed acyclic graph, or
DAG) format. Bighead Library pipelines are reusable, composable, and shareable.

A variety of popular machine learning frameworks are supported in Bighead Library pipelines
including TensorFlow, PyTorch, Keras, MXNet, Scikit-learn, XGBoost, H2O, R, and more.

http://www.twimlai.com
https://twitter.com/twimlai
mailto:sam@twimlai.com

page 11| twimlai.com | @twimlai | sam@twimlai.com

In addition, Bighead Library provides a catalog of over 100 different canned transformations
that can be applied to data in a variety of standard formats such as text or images, encouraging
users not to “reinvent the wheel.”

Pipelines built with Bighead Library propagate feature metadata end-to-end so that users
can understand feature provenance and visualize feature importance at the end of their
pipelines.

Redspot
Redspot is a centrally managed, multi-tenant Jupyter Notebook service available to Airbnb’s
machine learning practitioners. It is a fork of the official JupyterHub project that is tightly
integrated with the rest of the Bighead ecosystem.

Redspot lets Airbnb’s ML practitioners use notebooks as first-class tools by providing easy
access to data and pipelines, and allowing them to deploy notebooks all the way to production.

Every user’s environment in Redspot is containerized via Docker containers. This allows them
to install systems or Python packages without affecting other users. Users can use vetted
base images from Airbnb’s in-house image repository or create new images using provided
build tools.

Redspot notebooks are version controlled, can be reverted to prior checkpoints, and can be
easily spawned on dedicated AWS CPU and GPU instances. Notebooks and files are easily
shared via AWS EFS.

Bighead Service
Bighead Service establishes the core modeling framework for Bighead and provides centralized
model lifecycle management and experiment management services. It provides a single
source of truth and history for models at Airbnb, whether they’re in development on a developer
laptop, or running in a production cluster.

Bighead Service keeps track of “Model Versions” consisting of the model’s code and a Docker
image through which it can be run, and “Model Artifacts” consisting of a set of model parameters
such as those learned via training. Instantiated Bighead models can be accessed via a
lightweight standardized API baked into the various Docker images.

Bighead Service also provides a user interface for:

•	 Experimentation. Users can set up and track online model experiments.

•	 Evaluation. Users can access a dashboard of model metrics, visualizations, and alerts.

•	 Deployment. Users can track model changes, and deploy and roll back models.

http://www.twimlai.com
https://twitter.com/twimlai
mailto:sam@twimlai.com

page 12| twimlai.com | @twimlai | sam@twimlai.com

Deep Thought
Deep Thought is a scalable serving environment for Bighead models. It is based on containers
and Kubernetes, providing consistent development and training environments, runtime isolation,
and scalability. It is completely configuration-driven so data scientists don’t need to involve
engineers to deploy new models. Deep Thought exposes deployed models via APIs, and
provides standardized logging and alerting accessed through Bighead Service dashboards.
Models have access to feature data from Zipline.

ML Automator
ML Automator is a workflow engine that runs behind the scenes to automate common offline
tasks in Bighead such as periodic model (re)training and evaluation, batch scoring, uploading
scores, and creating dashboards and alerts based on scores. ML Automator users specify
these tasks declaratively and ML Automator generates Airflow DAGs under the covers,
specifying the appropriate connections to Bighead resources and Zipline data. Computation
is run on Spark for scalability.

Facebook’s FBLearner
Machine learning is at the heart of many Facebook services including the newsfeed, ads,
search, translation, speech recognition, and content understanding. The ubiquity of machine
learning at the company is due in large part to a 2014 initiative that sought to re-envision its
machine learning development process from scratch with the goal of putting state-of-the-art
ML and AI algorithms in the hands of every engineer.

By mid-2016, the organization unveiled FBLearner Flow,7 what we now understand to be the
first (and central) element of its broader ML-as-a-Service platform. FBLearner was designed
with the guiding principles of reusability, scalability, and ease-of-use. At the time of its
announcement, FBLearner had already had a profound impact at Facebook with approximately
150 authors creating and publishing machine learning workflows. These workflows were used
by over a quarter of the engineering team and generated over 6 million predictions per second.
Today, most machine learning pipelines at Facebook are run via FBLearner. At the time of our
interview, FBLearner and Facebook’s other AI Infrastructure initiatives were supported by a
team of 17 people.

Figure 6. Facebook’s FBLearner8

ModelFeatures Training Inference

CPU CPU+GPU CPU

FBLearner
Feature
Store

FBLearner
Flow

FBLearner
Predictor

Data Predictions

http://www.twimlai.com
https://twitter.com/twimlai
mailto:sam@twimlai.com

page 13| twimlai.com | @twimlai | sam@twimlai.com

FBLearner consists of these key components:

FBLearner Feature Store
FBLearner Feature Store is the component of the FBLearner platform that allows developers
to discover and use pre-built features in their models.

Feature Store is essentially a catalog, or marketplace, of feature generators for use in both
training and serving scenarios. Teams at Facebook can share, discover, and consume these
features to accelerate the development of their models.

The feature generators offered in Feature Store expose data in the Facebook data warehouse
in a consistent manner. Feature Store provides a rich type-system for describing this data,
ultimately enabling many of the downstream features of FBLearner Flow.

FBLearner Flow
FBLearner Flow is Facebook’s platform for building, training, and evaluating machine learning
models. It is organized around three central concepts:

•	 Workflows. A workflow is a single pipeline defined within the FBLearner Flow system.
Workflows describe the steps necessary to train or evaluate a specific model in FBLearner.
The platform itself is agnostic to the type of ML algorithms used. Any engineer can write
a workflow for their favorite algorithm and publish it to the entire team.

•	 Operators. Operators are the basic components from which workflows are composed.
They are the smallest unit of execution in FBLearner. They have distinct inputs and
outputs and run on a single machine. Operators are designed to be a very flexible
abstraction. Generally, they are functions in a Python program, but essentially anything
for which a binary can be provided can be turned into an operator.

•	 Channels. Channels represent the flow of data between operators within a workflow.
They are characterized by their inputs and outputs and must have a well-defined type.

These concepts are implemented via three core components:

•	 A workflow authoring and execution environment. Workflows are defined in Python
code with special, platform-specific extensions. Using these extensions, developers
define graphs of operators and specify these operator’s parameters such as inputs,
outputs, models, and evaluation metrics. Each operator declares its CPU, GPU, and
memory requirements. At runtime, the number and type of input data are validated,
workflows are parallelized for scalability, and they are scheduled to run on a slice of a
machine that meets the requirements.

•	 An experimentation management dashboard. FBLearner Flow provides a user interface
for launching and managing workflows and experiments, viewing and comparing
experiment results, and deploying models to production. The metadata and results of

http://www.twimlai.com
https://twitter.com/twimlai
mailto:sam@twimlai.com

page 14| twimlai.com | @twimlai | sam@twimlai.com

all workflow runs are stored and indexed, allowing engineers to easily find experiments
via any number of parameters. The system supports complex hyperparameter sweeps
for model tuning and provides visualizations to help developers determine the
configurations that produced the best results.

•	 Predefined pipelines. Flow provides a library of user-contributed machine learning
workflows as well as a set of scalable workflows maintained by the company’s AI
Infrastructure team. The workflows can be applied to commonly used models like deep
neural networks, gradient-boosted decision trees, support vector machines, and logistic
regression.

FBLearner Predictor
After training, finalized models from FBLearner Flow are then deployed to production via
FBLearner Predictor. Predictor provides a scalable, low-latency, multi-tenant model serving
environment for online predictions based on live traffic. Using the integration between the
Flow UI and Predictor’s model serving capability, users can run experiments in which multiple
versions of live production models are deployed and compared.

Related work
Facebook’s ML platform engineering team has developed offerings for each layer of its machine
learning stack. At the hardware level beneath FBLearner, they have created custom server
designs (which they have open sourced via the Open Computing Project). At the framework
level above FBLearner, they lead the development of PyTorch and are a leading contributor
to the ONNX ecosystem for framework interoperability.

At the FBLearner level, Facebook has published only high-level descriptions of the system
and its capabilities. Because of Facebook’s immense scale and unique internal systems it is
unclear how much of FBLearner would generalize to third parties. Despite this, the broader
ideas behind it continue to influence other systems and have certainly informed the other
platforms and tools described in this ebook.

LinkedIn’s Pro-ML
Machine learning is in wide use at LinkedIn, powering everything from user-facing personalized
news feeds and job recommendations to back-office functions such as advertising and sales
lead generation.9, 10, 11 In order to empower LinkedIn’s disparate teams to use machine learning
more efficiently and productively, the company established a platform engineering team
whose primary product today is an internal machine learning platform: LinkedIn Pro-ML.12

Pro-ML is the latest step in LinkedIn’s ML platform journey. As their platform team has
developed and expanded, they have successively standardized and outgrown a number of
platform technologies. Initially, LinkedIn began with a Hadoop-based platform, then moved
to Apache Spark and MLlib. Later, they developed and open sourced their own MLlib replacement:
Photon-ML.

http://www.twimlai.com
https://twitter.com/twimlai
mailto:sam@twimlai.com

page 15| twimlai.com | @twimlai | sam@twimlai.com

In parallel with LinkedIn’s evolving technology stack, the platform team’s audience has also
changed. The team initially catered to the company’s core set machine learning developers.
However, as in-house efforts such as its AI Academy broadened the base of developers
working with AI and ML, LinkedIn’s platform team stepped up to support the needs of this
broader audience. Pro-ML is a suite of complementary systems that help streamline the
model development lifecycle at LinkedIn. Pro-ML consists of:

Figure 7. LinkedIn’s Pro-ML

Feature Marketplace
LinkedIn observed that many of their teams were developing similar features, creating a
“pipeline jungle” that was too complex to build upon. The Feature Marketplace was developed
to address this challenge, providing a way for teams to simplify and unify the features available
on Pro-ML. Feature providers can publish their features using simple configuration files that
allow them to specify the location of their source data, such as an HDFS path or a pointer to
a key-value store, along with the requisite extraction logic. The logic that provides the feature
is hidden behind an abstraction layer, allowing consumers to utilize features simply by name.

Exploration and Authoring
Pro-ML provides a standardized suite of tools for model development (such as Jupyter
Notebook) along with a pre-built set of ML models that developers can use off-the-shelf.
Developers can specify how their models are to be trained on features from the Marketplace,
as well as on custom features, using a DAG specified in code.

Training
Models in Pro-ML can be built using Tensorflow or LinkedIn’s own Photon ML. Photon ML is
an open source ML library that their algorithms team developed for Spark. It offers many
models in popular use at LinkedIn such as Generalized Linear Models and Generalized Linear
Mixed Models.

Running

Experiment Feature Model

Feature M
arketplace

H
ealth Assurance

Deploying

Training

Exploration and Authoring

http://www.twimlai.com
https://twitter.com/twimlai
mailto:sam@twimlai.com

page 16| twimlai.com | @twimlai | sam@twimlai.com

Hadoop and Apache Spark provide the foundation for training models at LinkedIn with the
former supplying distributed storage (via HDFS), and the latter providing the runtime platform
for large-scale training and inference. LinkedIn developed and open sourced TonY (Tensorflow
on YARN) which helps effectively manage clusters running distributed TensorFlow.

Figure 8. A workflow-oriented view of LinkedIn’s Pro-ML

Deploying
LinkedIn’s production models can be very large and often need to be distributed over multiple
machines to perform adequately. LinkedIn has developed workflows and tooling that ensure
new models can be deployed and released into production in a consistent and controllable
way. This provides developers with a standardized way of deploying and monitoring their
models while ensuring a high quality of service for production systems.

A web interface called Model Explorer allows users to discover, publish, and deploy models
into production. It also provides the ability to perform model validation in a test environment.
Once validated, models can be deployed to a single instance. Once validated on a single
instance, the model can then be scaled to many production instances.

Health Assurance
Pro-ML continuously monitors feature distributions to detect changes. Monitoring includes
mean, variance, and some higher-order statistics. If the feature distribution exhibits unexpected
behavior, the system automatically generates alerts. When an alert is received, the explanation
of why the model misbehaved can be investigated.

Understanding ML Platform Capabilities
Presented with case studies drawn from the experiences of tech giants and ML/AI early
adopters, it’s easy for enterprises that don’t fall into either of these categories to ask: what’s
this got to do with me? After all, the typical enterprise doesn’t have near the scale of a Google
or Facebook when it comes to ML modeling.

Health Metric Monitoring
Pro-ML Jupyter

Notebok

Model Creation
Service

(Photon-connect)
Model
Repo

Model Deployer
& Release Tool

Debug &
Explain Tool

ML Algorithms
Large-scale deep learning

Trees (XGBoost)
Personalization (GLMix)

Feature
Marketplace

Production

http://www.twimlai.com
https://twitter.com/twimlai
mailto:sam@twimlai.com
https://hadoop.apache.org/
https://spark.apache.org/

page 17| twimlai.com | @twimlai | sam@twimlai.com

Yet, while factors like team size, business models, technological maturity, available resources,
and regulatory considerations vary among organizations and industries, there is much that
can be learned from the platforms built by these early model-driven enterprises.

Each of the platform features or components they’ve built points to a lesson they’ve learned
about overcoming the obstacles to putting machine learning models into production and
enabling greater throughput and effectiveness for their data scientists and ML engineers.

By abstracting across the experiences of many early platform builders and users, and identifying
the capabilities that we see frequently recurring in the platforms that they’ve built, we have
identified a core set of platform capabilities. These capabilities, or requirements, for scaling
machine learning in the enterprise are presented and organized here according to our high-
level model of the machine learning process. Notes associated with these capabilities provide
additional context and examples from the open source and vendor ecosystems.

Figure 9. The machine learning process

While the typical company might not need the full set of capabilities that a Facebook or Airbnb
has implemented, there is certainly much we can learn about operationalizing and scaling
machine learning from their examples.

Data Acquisition & Feature Management
Enterprise machine learning is made possible by the large and growing amount of data now
captured by the typical company. But simply having the data is not enough. Successfully
scaling machine learning in the enterprise depends on an organization’s ability to effectively
harness its data resources in an efficient and repeatable manner. The organizations that do
this most successfully have processes and technology in place supporting:

Centralized data access. Organizations with modern data warehouses, data lakes, or data
fabrics are at a significant advantage when it comes to scaling their ability to deliver ML
projects. Without centralized data or data access, finding and gaining access to the data
needed to build machine learning models can consume a great deal of time and effort. On
the other hand, when data is centralized, teams no longer need to navigate or search multiple
systems to access the data they need for their projects. As a result, any efforts resulting in
simplified data access tend to be a force-multiplier on data science resources. Furthermore,
a data warehouse can also be a useful place to store transformed data and features, facilitating
reuse across projects and teams.

Data Acquisition &
Feature Management

Experiment Management &
Model Development

Model Deployment &
Performance Monitoring

http://www.twimlai.com
https://twitter.com/twimlai
mailto:sam@twimlai.com

page 18| twimlai.com | @twimlai | sam@twimlai.com

The line between the modern data warehouse and the data lake continues to blur. It is common
to see systems based on the Hadoop ecosystem here, such as Apache Hive or Impala.
For organizations all-in on cloud, common choices include a combination of cloud storage
plus Amazon Redshift, Google BigQuery, or Microsoft Azure Cosmos DB, or Snowflake.
For centralized access to distributed data, Alluxio is one of several available commercial
solutions.

Repeatable data pipelines. Enterprise data rarely exists in the exact form or format required
by data scientists for a given project. Rather, raw data must be processed through a series
of transformations in order to cleanse and normalize it before it can be used for training. Once
a model is put into production, this same sequence of transformations must be applied to
the data to ready it for inference.

Early in the exploratory phase of model development, these transformations are often applied
in an ad hoc manner. However, manual transformations should give way to programmatically
executed transformations very quickly, as the former are highly error-prone, not readily
repeatable, and don’t scale.

Automation via scripts or other programs can be a starting place, but more sophisticated
scenarios are better supported by DAGs, which are in use supporting data pipelines at each
of the organizations we’ve profiled. Apache Airflow is an open source workflow framework
that supports DAGs and can be used to build data pipelines. Apache Spark is also frequently
used for data pipelines. Pachyderm and DVC are startups with more full-featured open source
offerings in this area.

Data labeling. Most ML in use today is supervised learning, meaning it requires labeled training
data in order to work. Sometimes these labels can be extracted from existing data, but often
the labels we need to support ML applications must be manually created. Labeling is often
thought of as something that happens separately and before the machine learning process
itself, but this is changing for several reasons. First, the collection of labeled data is very
expensive, and integrating it into the ML process ensures that only the amount and type of
data needed to meet the project’s goal is labeled. Perhaps more interesting is the increasing
maturity of techniques like active learning and semi-supervised learning. These techniques
place labeling squarely in the ML loop and use ML itself to determine which data to label. In
any case, efficient labeling requires tooling customized to the data and labels for a specific
problem.

Vendors offering software tools to facilitate labeling and annotation include Alegion, Figure
Eight, Mighty AI, and Scale. These companies’ offerings include both annotation tools as well
as the ability to manage labeling projects and external human labelers. Explosion AI’s Prodigy
and Alectio (still in stealth at the time of this writing), offer tools based on active learning for
increasing the data-efficiency of models.

http://www.twimlai.com
https://twitter.com/twimlai
mailto:sam@twimlai.com

page 19| twimlai.com | @twimlai | sam@twimlai.com

Feature repository. A given organization’s models often share the same or similar features.
For example, many machine learning projects at a retailer will use features representing
customers, products, orders, etc. Constructing a library of common features allows the
organization’s data scientists and developers to avoid reinventing the wheel each time they
want to incorporate these basic business entities into their models. Such a library or repository
is often called a feature store, reflecting its role as both a storage facility for features, and a
marketplace of sorts where users can share, discover, and consume new features.

Back in 2017, Uber reported having over 10,000 features in the Michelangelo (its ML platform)
feature store.13 Today, the feature store remains somewhat immature in practice, with few
commercial or open source offerings available. As noted earlier, Airbnb announced its intent
to open source Zipline, but hasn’t yet delivered on this promise. Google and GO-JEK (the $10
billion Indonesian delivery and transportation startup) announced Feast,14 an open source
feature store. Hopsworks15 by Logical Clocks is an open source, Hadoop-based end-to-end
ML platform that includes feature store functionality.

Feature provenance. Unlike the capabilities mentioned so far in this section, feature provenance
isn’t so much a system. Rather, it’s the idea that with the right technology and processes in
place—including centralized data, repeatable data pipelines, and a feature repository—it is
possible to trace all the way back from a given inference or model to the feature data
incorporated into the inference decision or the model’s training.

Pachyderm touts provenance as a key feature. Provenance also figures into a general set of
model governance features in the ParallelM, an end-to-end ML platform recently acquired
by DataRobot. Provenance16 also happens to be the name of a Python library that can track
how and where artifacts such as models, features, or any object or file are used in an
ML pipeline.

Backfills. Model development frequently results in new features being identified and created.
These new features can involve complex and computationally expensive data transformations.
In order to move these models into production and support fast inference, we often want to
precompute, or backfill, the values of these features for our historical data, and store them in
the data warehouse. The ability to programmatically perform backfills can help ensure that
this is done in a repeatable and efficient manner. To date, we’ve not come across any dedicated
tools focused on automating backfills. Workflow tools such as Apache Airflow can provide a
useful framework for implementing your own programmatic backfills.17

Data versioning. Achieving the highest levels of reproducibility and the ability to forensically
analyze deployed models and their decisions requires being able to go back in time to determine
the exact state of the training data at the time a model was trained.

Pachyderm and DVC, both mentioned previously, are specialized tools with robust data
versioning capabilities. Several end-to-end ML platform offerings, notably Dotscience (still
in stealth at the time of writing) and MissingLink also include data versioning capabilities.

http://www.twimlai.com
https://twitter.com/twimlai
mailto:sam@twimlai.com

page 20| twimlai.com | @twimlai | sam@twimlai.com

Experiment Management & Model Development
Data science is a scientific endeavor and requires experimentation in order to identify and
optimize a predictive model. Managing these experiments via a software tool or system allows
data scientists to get experiment parameters and results out of spreadsheets (or worse, file
names, post-it notes, or their heads) and into a tracking system aiding repeatability, collaboration,
optimization, and automation. The organizations we’ve profiled have all built robust experiment
management and model development features into their platforms to allow data scientists
to delegate repetitive aspects of model training and optimization to machines, freeing their
time to focus on high-value creative activities. Here are some of the most common capabilities
of these systems:

Experiment tracking and visualization. Machine learning model development is an inherently
iterative process. The process of developing models typically involves running a series of
experiments—hundreds or thousands are common—in order to identify the model types and
parameters that result in optimal performance. Historically, the parameters that define each
experiment—that experiment’s hyperparameters—are manually tracked by data scientists.
This is done via any one of a variety of methods including using a lab notebook, document,
spreadsheet, file and folder naming conventions, log files, etc. The experiment management
features of modern ML platforms eliminate the burden and fallibility of manual tracking by
programmatically logging the parameters and results of each test run.

With experiment parameters and results readily accessible, access to visual plots can be
provided to allow data scientists to easily compare the performance of different model versions.
These plots can be generated automatically as each experiment is logged and made available
to data scientists via an experiment results dashboard.

Some degree of support for experiment management and tracking is included in most end-
to-end ML platform offerings. In addition, a number of specialists exist as well. Comet, Neptune,
and Weights & Biases all offer full-featured experiment management and visualization solutions
via SaaS, with the latter specializing in deep learning. SigOpt18 pairs experiment tracking and
visualization with enterprise-grade automated hyperparameter optimization (more below).
Sacred19 is an open source tool for configuring, organizing, logging and reproducing experiments
developed at IDSIA. TensorBoard,20 part of the TensorFlow ecosystem, has emerged as a
popular open source tool for logging and visualizing experimental results. It can be used
independently of the TensorFlow framework with a compatible logging library.

Model version control. In addition to tracking model parameters, trained models themselves
can also be tracked across the model development lifecycle via a version control system.
Versioning models allows data science and machine learning teams to more readily reproduce
experiments and provides for greater consistency between prototyping and production
environments.

http://www.twimlai.com
https://twitter.com/twimlai
mailto:sam@twimlai.com

page 21| twimlai.com | @twimlai | sam@twimlai.com

Models may be versioned by checking model code, serialized model objects (e.g. a Python
pkl file), a model’s Docker container, or other model artifacts into a Git repository, ideally
automatically at appropriate points in the modeling workflow. Most modern ML platform
offerings support versioning models. Paperspace and Valohai are examples of startups whose
platform products emphasize model versioning. Verta is a specialist in this area; the company’s
founder created the open source ModelDB21 model management system while in graduate
school.

Distributed training. For smaller ML models, training can be reasonably done on the data
scientist’s desktop. As organizations begin working with more sophisticated models such as
deep learning, training against larger and larger datasets, or enforcing more sophisticated
data access controls, distributed training in a centralized environment becomes increasingly
important. Distributed training frees up the data scientist desktop and provides a centralized
nexus for management and control.

Many homegrown, commercial, and open source ML platforms rely on the open source
Kubernetes container orchestration system for distributed training. For more details on how
Kubernetes can be used to support data science—including a look at some representative
tools such as the Kubeflow22 ML platform subproject—see the first ebook in our AI Platforms
series, Kubernetes for Machine Learning and Deep Learning.23

Automated feature generation. Feature engineering, the process of creating new features to
train machine learning models, is historically the most challenging and time-consuming
aspect of data science. At its heart, feature engineering involves iteratively applying a series
of transformations and aggregations to existing data. Examples include generating derived
features (such as calculating age from a birthdate) or converting categorical variables (such
as transaction types) into one-hot encoded, or binary, vectors. Some of these operations are
based on a data scientist’s experience, domain knowledge, and intuition. Others are really just
the rote application of patterns that are common to a specific type of problem or data, and
can thus be automated.

One technique for automated feature engineering, called Deep Feature Synthesis,24 was created
at MIT’s Computer Science and Artificial Intelligence Lab (CSAIL) and is being commercialized
by startup Feature Labs via the open source, Python-based Featuretools25 project. Automated
feature generation is also commonly included as part of AutoML tools, to be discussed shortly.

Automated hyperparameter optimization. Complex models depend on many tunable
parameters that must be optimized to maximize performance and accuracy. Rather than
manually experiment with various combinations of values, automated hyperparameter
optimization (HPO) tools systematically work to identify the optimal hyperparameters. HPO
can use simple inefficient methods such as random or grid-based search of the hyperparameter
space to look for optimum parameter values, or rely on more sophisticated techniques—like
Bayesian optimization—to optimize parameters more efficiently.

http://www.twimlai.com
https://twitter.com/twimlai
mailto:sam@twimlai.com

page 22| twimlai.com | @twimlai | sam@twimlai.com

Many end-to-end platforms include some kind of HPO capability, often based on one of the
many26 open source hyperparameter tuning packages like Yelp’s MOE,27 SMAC,28 Skopt,29
Katib,30 BayesOpt,31 Hyperopt,32 or Tune.33 SigOpt, built by the creators of MOE, SMAC and
BayesOpt, provides a full-featured commercial solution for black-box hyperparameter
optimization offering advanced features such as mixed parameter spaces, high hyperparameter
dimensionality, asynchronous parallelization, multiple metrics,th and an API to enable the
service.

AutoML. AutoML is a superset of automated feature generation and HPO that employs a
variety of techniques to identify useful features and the best models and model architectures.
In the case of relatively simple ML problems (e.g. classification and regression on tabular
data), AutoML tools iteratively generate features and apply and optimize appropriate models
and compare them against one another until a winner is found. For more involved problems
such as deep learning, complex techniques such as neural architecture search and
neuroevolution may be employed.

The term AutoML was arguably popularized by Google with a late 2017 New York Times PR
coup34 followed by the release of Google Cloud AutoML Vision in early 2018. Google has since
expanded its line of Cloud AutoML services35 to include AutoML Video Intelligence, AutoML
Natural Language, AutoML Translation, and AutoML Tables. Software vendors DataRobot
and H2O have mature software offerings targeting traditional machine learning use cases.
For deep learning, the Determined AI end-to-end offering includes an AutoML feature based
on neural architecture search.

Workflows. Throughout the training process, a number of experiments are run, artifacts
created, and models evaluated. At scale, this creates a lot of busy work and opportunity for
error, as data must be moved around and formatted appropriately for each step. Standardized,
automated workflows are an important element of ensuring the efficiency and repeatability
of training.

The Apache Airflow project provides a strong foundation upon which to build and execute ML
workflows. For Kubernetes users, Kubeflow provides a container-based solution with its
Pipelines36 feature. End-to-end ML platform offerings typically have a strong notion of workflow.
This can be an advantage for users just getting started but can pose problems for those with
existing processes they’d like to automate. See the discussion on Wide vs. Deep platforms
in the section, “Developing Your ML Platforms Strategy.”

Coding environment and standards. Clear standards around the type of models and frameworks
supported by the platform and how models are to be coded are expedient. Jupyter Notebook
is ubiquitous among those with a data science orientation, but those with more of an engineering
background may prefer standard code modules and development tools.

The open source Papermill37 project, developed and used at Netflix, allows users to parameterize
and execute Jupyter notebooks. The team developing the popular Fast.ai deep learning library

http://www.twimlai.com
https://twitter.com/twimlai
mailto:sam@twimlai.com

page 23| twimlai.com | @twimlai | sam@twimlai.com

used a similar technique in the development of its latest version: all code is developed in
Jupyter notebooks and extracted upon code check-in. Startup Fiddler was founded to build
a platform for machine learning that incorporates traditional IDE concepts such as debugging.
Dataiku DSS allows models to be prototyped using a visual drag-and-drop interface.

Whatever the programming environment of choice, it is common to provide extensions to
that environment to simplify tasks like data access and expose various features of the machine
learning platform.

Framework support. Different organizations take different stands on the issue of how
opinionated the ML platform should be. Some organizations believe that developers should
be free to make whatever choices are best for their applications and that the platform should
support all popular languages and frameworks. Others choose to provide deep support for a
single framework (open source or internally developed), to the exclusion of others. Both
choices are valid and depend on the goals and resources of the organization.

Airbnb, for example, is an organization whose platform team seeks to be framework
agnostic. 38, 39 Twitter, on the other hand, has recently standardized on TensorFlow for the
most recent version of its DeepBird deep learning platform.40

Model Deployment and Performance Monitoring
The ultimate goal of our data science efforts is the creation of a model, right? Not exactly.
The goal is a model put to productive use. This requires overcoming the “last mile” barriers
to getting the model into production.

While most of the data science process is performed outside of the critical path of key business
systems, models deployed as part of production systems are the opposite. They must be
able to generate their predictions within time, reliability, and (in the case of edge deployment)
power bounds appropriate for the systems in which they’re being deployed.

Because of the potential for differences between training data distributions and those of real-
world users/traffic, attention must also be paid to the way we introduce production traffic to
new models. Further, models have a limited shelf life and must be continuously monitored
for degradation.

These needs and more can be met by the model deployment and management capabilities
of ML platforms:

Model serving. A basic requirement of an ML platform is being able to serve models in a
scalable and consistent manner. The organizations we’ve interviewed have typically addressed
the need to support inference for multiple models with a single, multi-tenant environment to
which any of the organization’s models can be deployed. Different organizations and platforms
standardize on different types of model artifacts for deployment, including binaries, code,
parameters, and full containers. Deployed models are often exposed as gRPC, REST, or
messaging-based decision microservices via API wrappers.

http://www.twimlai.com
https://twitter.com/twimlai
mailto:sam@twimlai.com

page 24| twimlai.com | @twimlai | sam@twimlai.com

Kubernetes is a popular choice for distributed inference environments due to its built-in
container and microservice management features like routing, load balancing, and declarative
autoscaling.23 Algorithmia’s AI Layer allows organizations to publish decision services using
Git and Docker, deploy them to any cloud or on-premises infrastructure using Kubernetes,
and manage their use down to the API call level. Seldon Core is an open source model serving
framework for Kubernetes that is incorporated into platforms like Kubeflow, IBM Fabric for
Deep Learning41 (FfDL), and Red Hat OpenShift. Cloud-based ML platform offerings like AWS
SageMaker, Microsoft Azure Machine Learning, and Google AI Platform typically support
one-click deployment of trained models.

Model instrumentation and evaluation. As previously noted, models are perishable. The
statistical distribution of data that a model sees in production and that of the training data
will tend to drift over time. This will cause model performance to degrade and, if this drift isn’t
detected, can result in negative business outcomes such as lost sales or missed fraud. To
prevent this, the model serving apparatus should provide a variety of ongoing monitoring
capabilities. Ideally, basic monitoring should be applied automatically and transparently by
the deployment platform, and engineers should be given tools or APIs that allow them to
extend this to meet model- or application-specific requirements. Basic monitoring should
include, at minimum, logging all scoring features and decisions for later analysis. Dashboards
should collect and display model performance over time in both technical and business terms
to simplify problem identification by both business and technical users.

Most platform offerings with support for deploying models also offer some type of visualization.
Dataiku DSS, for example, provides dashboards and data validation policies for in-production
models, allowing users to monitor model performance metrics, drift, data consistency, and
more.

Model data validation. More sophisticated platforms continuously monitor the statistical
properties of data seen by production models and compares these to the model’s reasonable
operating range, as determined by the training data distribution. When drift exceeds a
predetermined model tolerance, the system can take remediating action such as issuing alerts
or flagging the model for retraining. Beyond statistical drift, many errors seen in production
stem from a disconnect between the features expected by the deployed model, and those
delivered by the production data pipeline. This is often the result of these subsystems being
developed independently. The model deployment platform can play a role here by monitoring
the presence, type, and statistics of features presented to the deployed model to assure that
the model’s expectations are met.

There is an excellent discussion of data validation issues with production models in Data
Management Challenges in Production Machine Learning42 by authors at Google.

http://www.twimlai.com
https://twitter.com/twimlai
mailto:sam@twimlai.com

page 25| twimlai.com | @twimlai | sam@twimlai.com

Phased deployments and online experiment management. Platforms can help ensure safe
and effective model deployment by automating the implementation of phased deployments
and the management of online experiments. These two share direct analogs with the deployment
strategies DevOps teams have been refining to support the safe rollout of microservices.
Blue-green testing allows for the quick rollback of new models that fail on deployment. Canary
deployments allow for testing of new models with small amounts of traffic until they’re validated.
And A/B testing allows for competing models to be tested on live traffic. All of these techniques
rely on version-aware automated model deployment mechanisms, as well as load balancing
and traffic management features provided by the platform.

For example, TensorFlow Serving, the model serving component of the TensorFlow Extended
(TFX) platform, uses abstractions like sources, loaders, version policies, labels, and aliases
to flexibly support arbitrary A/B testing and canary deployment schemes.43, 44 AWS SageMaker
supports similar functionality using “endpoints.”45

Batch scoring. Some applications require that developed models be used to score large
amounts of data offline rather than scoring online via a microservice. If offline scoring needs
to be done with regularity it may be integrated via the platform to help ensure that consistency
requirements such as model version and data validation are met.

Airbnb’s ML Automator, for example, supports batch inference using a layer built on top of
Apache Airflow and Spark.

Summary
In this section, we’ve reviewed several capabilities commonly provided by machine learning
platforms. Next, we explore how to get started assembling your organization’s own ML platform.

Figure 10. Summary of ML platform capabilities

Data Management Experiment Management Model Management

• 	Data lake/data warehouse
• 	Automated/declarative
	 transformation pipelines
• 	Feature store/marketplace
• 	Feature data snapshotting/
	 time-machine/backfills
• 	Feature provenance

• 	Notebooks
• 	Flexible support for arbitrary

algorithms/ frameworks
• 	Model pipelines/workflows
• 	Offline experiment
	 management
• 	Distributed training
• 	Hyperparameter optimization

• 	Model data validation
• 	Model instrumentation
	 and evaluation
• 	Model serving
• 	Online experiment
	 management

Multitenant training & serving infrastructure:
• Docker/Containers/Kubernetes

• Commodity compute and/or cloud
• See our ebook, Kubernetes for Machine Learning and Deep Learning, for more on this

http://www.twimlai.com
https://twitter.com/twimlai
mailto:sam@twimlai.com

page 26| twimlai.com | @twimlai | sam@twimlai.com

Developing Your ML Platforms Strategy
So far we’ve discussed the importance of developing a model-driven orientation for your
enterprise, and how that creates the need to be able to deliver models to production rapidly
and consistently. We then explored some examples of the internal platforms that leading
model-driven companies have developed to help them achieve this goal. From these, we
identified a set of common capabilities that define the modern machine learning platform.

The next question becomes: where do we go from here? How can you use this research to
develop an actionable plan for building out your own enterprise machine learning platform?
Or, more ambitiously, for helping your enterprise achieve model-driven excellence?

Here, we present seven steps or considerations that will help you develop your organization’s
ML platform strategy. By documenting the application of these considerations to your enterprise,
you will be well down the road towards articulating an ML platform strategy for your organization.

1. Know your why
Organizations that have deployed ML platforms cite a wide variety of benefits that help justify
their investment. Conversely, by starting from the benefits that are most important to your
organization, you will quickly get a better idea about which platform capabilities and
characteristics will be most important for you. Here are a few of the benefits that come up
most often:

•	 Abstraction. In small data science organizations, the same data scientists are responsible
for all aspects of machine learning. As the organization matures, more specialized roles
evolve and it becomes important to provide for a separation of concerns. At scale, for
example, we don’t want data scientists or ML engineers dealing with setting up the
infrastructure upon which their models are trained and run. These tasks are best handled
by ML infrastructure specialists. Platforms provide a leverage point for enforcing this
separation of concerns.

•	 Agility. Agility speaks to the speed with which an organization is able to innovate and
adapt to changing needs or new trends. In a fast-changing, model-driven world, there
are always more models needed than the organization has the capacity to produce.
Furthermore, those models that have been developed tend to degrade over time. By
accelerating their ability to get new models into production, ML platforms help enterprises
become and remain more competitive.

•	 Automation. Many aspects of the enterprise machine learning process are well-defined,
repetitive, and exacting. These are ideal candidates for automation, which helps ensure
greater throughput and consistency. With repetitive tasks reliably delegated to the ML
platform, data scientists and developers can focus their attention and intellect on the
more valuable challenges of problem and solution definition.

http://www.twimlai.com
https://twitter.com/twimlai
mailto:sam@twimlai.com

page 27| twimlai.com | @twimlai | sam@twimlai.com

•	 Consistency or repeatability. Consistency and repeatability throughout training and
production are key requirements for any mission-critical ML use cases and are key
benefits offered by ML platforms. ML platforms can help ensure that the correct data
is available to models both in training and in production, that the model in production
is indeed the model the organization thinks is in production, and that the data seen in
production is similar enough to the data that the model was trained against.

•	 Democratization. As organizations embrace the goals of becoming more model-driven,
it can be expedient to widen the circle of individuals empowered to build machine
learning models. ML platforms help democratize machine learning by hiding much of
the incidental complexity of model training and deployment.

•	 Governability. In enterprise environments, governance requirements such as data
security, privacy, reproducibility, explainability, fairness, and compliance will regularly
come into play. Leaving it to each team or project to determine how to solve these
problems is inefficient, wasteful, and goes against many of the fundamental tenets of
governance. Your ML platform can provide a structure within which these teams can
operate, helping to ensure greater governability.

•	 Performance. Models that perform well on a given task are the goal of a data scientist’s
experimentation and the desired outcome of the modeling process as a whole.
Performance is often the difference between a model that makes it into production and
one that does not. By allowing teams to more easily find and access the data and
features needed for models, automating model selection and hyperparameter tuning,
and monitoring in-production models for performance degradation, ML platforms can
help teams build and maintain high-performing models.

•	 Productivity. Because of the highly iterative nature of machine learning, each step in
the process that can be accelerated or eliminated has a huge impact on cycle time and
the ability of data scientists and developers to quickly get their models into production.
ML platforms also reduce the cognitive load on data scientists and machine learning
engineers, allowing them to focus on the aspects of the ML process that are most
critical while delegating everything else to the platform. Furthermore, once they’ve
determined the right way to tackle a particular problem, a platform allows them to
automate the solution so that they no longer need to worry about it.

•	 Scalability. ML platforms help teams scale in many ways. They help them scale training,
decreasing the amount of time it requires to produce a performant model, and inference,
allowing applications to make more predictions more consistently. More importantly
though, ML platforms help teams scale their own output in terms of the number of
models they are able to produce in a given time, and their capacity to deliver and take
advantage of machine learning.

http://www.twimlai.com
https://twitter.com/twimlai
mailto:sam@twimlai.com

page 28| twimlai.com | @twimlai | sam@twimlai.com

•	 Visibility. Platforms help teams and managers gain much-needed visibility into machine
learning models in development and production. They provide a centralized resource
for collecting and sharing information on the data, features, experiments, and models
that these teams work with so that insights about them can be more easily gained and
shared.

2. Organize for success
Almost universally, the model-driven organizations that we’ve interviewed have established
dedicated “ML platform” or “ML infrastructure” teams to help make their data scientists and
ML developers more productive.

Setting up a platform team generally happens after there is a need for multiple data science
efforts to be supported simultaneously. When this occurs, ML platform teams are established
to drive efficiency and ensure that both scientists and developers have ready access to the
tools and resources they need to work efficiently.

Airbnb, for example, established its ML infrastructure team as demand for ML models grew
across a broad set of teams. The platform team’s mission is to eliminate what they call the
incidental complexity of machine learning, as opposed to its inherent complexity, thus making
machine learning more accessible to the company’s various developers.

While the establishment of ML platform or infrastructure teams is a trend that is just beginning
within enterprises, most organizations have a recent internal example to look to. In many
ways, ML infrastructure teams are to data scientists and ML developers what DevOps and
developer platform teams are to traditional enterprise developers. Just as the latter have
become a popular way to support software developers and ensure their productivity, so will
the former be to their machine learning counterparts.

3. Understand your users
Once a platform team is established, its first task is to understand its users. Each of the
platform’s potential users—researchers, data scientists, machine learning engineers, and
software developers—will typically have different skill sets, needs, and tool preferences.

Data scientists, to generalize, will be very comfortable with statistical tools and Jupyter
notebooks but are often less comfortable with tools like version control systems that are
commonplace in the software development world. Conversely, software engineers will be
comfortable with a variety of crude command-line tools but might benefit from a system that
offers them a selection of pre-built models to choose from. Whatever the mix, talking to the
user community will help the team develop a direction, establish feature priorities, and come
to terms with issues like how opinionated the platform should be.

http://www.twimlai.com
https://twitter.com/twimlai
mailto:sam@twimlai.com

page 29| twimlai.com | @twimlai | sam@twimlai.com

4. Consider build vs. buy
Organizations seeking to establish ML platforms for their data scientists and ML engineers
should carefully consider their options before deciding to build a proprietary solution.

The “build” approach, while highly customized to the needs of the organization, is expensive
and requires strong engineering talent and teams to develop and maintain the platform. The
“buy” option, on the other hand, often requires adapting to a given vendor’s approach but
demands less time and expertise on the part of the customer.

The reality is that “build” and “buy” exist on a spectrum. While Facebook, LinkedIn, and Airbnb
have each invested in dedicated engineering teams to build and maintain their own proprietary
ML platforms, in the case of Facebook’s FBLearner, the entire platform is largely built from
scratch. At Airbnb, on the other hand, the company’s platform engineering team made liberal
use of existing open source tools like Jupyter, Docker, Kubernetes, Airflow, and Spark in the
creation of its platform. LinkedIn’s platform is arguably somewhere in the middle, based on
many complex custom subsystems while taking advantage of the Hadoop and Spark
ecosystems.

We believe most enterprises will ultimately compose their ML platforms from commercial,
open source, or cloud-delivered software, along with custom integration and custom-coded
modules as needed to address their unique needs.

5. Explore available solutions
As you may have gathered from the examples in the previous section, the machine learning
tools market is growing quickly and there are many companies—startups and established
vendors alike—that offer products and projects that may be of use to your organization as
you build out your ML platform. So many, in fact, that the market can be quite confusing, with
many of these vendors making similar and opaque claims. Understanding the market landscape
will help you identify the right tools and prospective partners for your company.

Wide vs. Deep
One of the most interesting and important distinctions among the various tools available to
help you build out your organization’s machine learning platform is whether the tool aims to
be wide or deep:

Wide/Generalist Deep/Specialist

Wide refers to generalist tools that seek to provide
end-to-end support for various aspects of the
ML workflow. Wide offerings aim to give users

a broad platform-in-a-box experience.

Deep refers to specialist tools that seek to
solve one problem deeply. These tools typically
have robust APIs and are designed to easily fit
into an organization’s existing ML workflow.

http://www.twimlai.com
https://twitter.com/twimlai
mailto:sam@twimlai.com

page 30| twimlai.com | @twimlai | sam@twimlai.com

Figure 11. Wide vs. deep tools: pros and cons

Wide vs. deep presents both buyers and vendors with an interesting paradox. Specialist tools
by their nature tend to assume that users have enough of a pipeline or platform in place that
the tool is easily slotted-in and can quickly demonstrate value. Often, however, specialist tool
vendors find that customers have broader gaps in their workflow that prevent them from
taking advantage of the tool. As a result, these companies, often small startups, find that their
sales cycles are longer than anticipated as they (or the buyer) work to fill workflow gaps with
custom integration.This leads specialist vendors towards expanding their offerings to take
on more of the end-to-end pipeline problem so as to more quickly demonstrate value in
immature customer environments.

Generalist tools, on the other hand, face a different set of challenges. First, by the time a
customer is mature enough in their data science journey that they’re ready to adopt an end-
to-end platform, they’ve often already invested in building out one or more pieces of their own
workflow. These customers or their users are often not too excited about needing to start
from scratch with an unproven tool and throw out everything they’ve done. Second, the end-
to-end problem is deceptively simple, but the existence of so many specialized vendors is an
indication of the complexity, depth, and options inherent in many individual steps of the data
science process. So the individual features of an end-to-end platform may not even be as
capable, and are often not as tailored or differentiating, as the homegrown tools they seek to
displace. Finally, as many vendors jump into the ring with shallow end-to-end offerings and
aspirations to “own the data science pipeline,” end-to-end tools become increasingly
commoditized. In order to differentiate, these tools will need to build depth or specialization
in one or more individual areas in order to differentiate, thus heading in the opposite direction
as the specialist tools.

Wide/Generalist Deep/Specialist

Pr
os

•	 Easiest way to establish an ML platform;
quickest path to ML platform benefits

•	 Tightly integrated toolset requires little
custom integration

•	 Common control plane simplifies
management & governance

•	 One source for support

•	 Best-in-class functionality and/or
performance

•	 Flexible; coexists and easy to integrate with
existing tools, workflows, and decision

•	 Greater control over the key decisions driving
platform user experience

Co
ns

•	 Individual tools may be shallow in
functionality or performance

•	 All-or-nothing; may have to abandon existing
investments

•	 Beholden to vendor’s roadmap and priorities
for enhancements and bug fixes

•	 Greater risk of lock-in

•	 Lacks unified management & governance
•	 Must be integrated with existing workflows/

systems
•	 Multiple vendor relationships to manage;

end-user organization shoulders greater
support burden

http://www.twimlai.com
https://twitter.com/twimlai
mailto:sam@twimlai.com

page 31| twimlai.com | @twimlai | sam@twimlai.com

The result of this paradox is the increasingly confusing market in which we find ourselves
today, in which everyone markets themselves as an end-to-end platform and it’s up to the
customer to figure out if and where any depth exists. For example, DataRobot promotes itself
as an end-to-end platform for all of the modeling roles in an organization (business analyst,
data scientist, software engineer, etc.). Their strength, however, is in applying AutoML methods
to modest-sized tabular datasets for business analysts and “citizen data scientists.” They
lack many of the requirements to support large-scale custom model development in the
enterprise, however, and don’t offer robust support for deep learning.

Meanwhile, the open source TensorFlow Extended (TFX) project by Google is similarly marketed
as an end-to-end machine learning platform. In reality, it is a collection of special-purpose
modules (TensorFlow Data Validation, TensorFlow Transform, TensorFlow Model Analysis,
and TensorFlow Serving) that can be used—along with other open source technologies like
Apache Airflow or Kubeflow Pipelines for pipeline orchestration and Apache Beam for distributed
processing—to build a custom platform for TensorFlow models and developers.

Hopefully, in this discussion, it is clear that wide vs. deep should not be equated to good vs.
bad or vice versa. Rather, what’s important is to realize that different technologies have different
aims and that each organization will need to identify the best fit for its needs and choose
accordingly.

Wide vs. deep is an important distinction, but far from the only one. Other important
considerations include:

•	 Target use case. Understanding the intended use case for a given tool is key to
understanding how and where to best apply it. For example, Falkonry and Reality AI
both offer modeling tools targeting manufacturing and industrial use cases. The former
focuses on predictive operations applications while the latter targets embedded AI
systems with a wide variety of sensor connections.

•	 Target user profile. The needs and preferences of a business analyst vs. data scientist
vs. ML engineer vs. platform engineer can vary widely. Different tools cater to different
types of users in the decisions they make and features they offer. (See point 3, “Understand
your users,” above).

•	 Target model type. Platforms differ on the types of models that they target and support.
For example, some platforms target traditional ML model types while others target deep
learning. While they’ve since broadened their footprint, BigML originally only supported
decision trees and random forests as model types. Some platforms are even more
specific, targeting models built using a specific framework. TensorFlow Extended (TFX)
is an example. Others target a specific use case. For example, Allegro and Neurala are
platforms designed to help users create computer vision models.

http://www.twimlai.com
https://twitter.com/twimlai
mailto:sam@twimlai.com

page 32| twimlai.com | @twimlai | sam@twimlai.com

•	 Tool history/legacy. Two similarly marketed tools can take very different approaches,
often informed by the founders’ backgrounds or the company’s technology legacy. For
example, Dotscience, a startup mentioned previously, was founded by Luke Marsden
who previously founded ClusterHQ, a company focused on containerized storage
systems. As a result, while their tool is marketed like other end-to-end ML platforms,
its strength is in data versioning and snapshotting.

	 Paperspace’s end-to-end platform offering, on the other hand, grew out of an acquisition
of a team whose roots were in building CI/CD systems on top of Kubernetes. As a result,
their view of the world is very software engineer centric. Examining the origins of a given
tool and team can help with understanding the tool’s best application and use-case.

•	 Open vs. closed source vs. SaaS vs. cloud. ML platforms are delivered in a wide variety
of formats, including open and closed source software that teams can run in their own
datacenters, software that is supported running in any cloud, and SaaS software, whether
supplied by one of the large cloud vendors or an independent firm.

6. Learn from DevOps efforts
We’ve alluded to this point earlier in this ebook, but it’s worth reiterating here. Our efforts to
industrialize and scale machine learning mirror in many ways the parallel evolution that has
taken place in software development over the past decade and much can be learned from
both the process and the result.

Modern software development practices emphasize strong problem definition (user stories),
tight iterative loops (sprints), high degrees of automation (CI/CD), high levels of repeatability
(Docker containers), and robust platforms that provide developer services (PaaS) and manage
the underlying infrastructure (container orchestration, Kubernetes). Of course, the analogy
isn’t perfect and can be taken too far. Still, your organization likely has learned a lesson or
two about providing platform services to teams of developers, and these lessons can be
applied to supporting your data scientists as well.

7. Start small
It would be hard to overemphasize the evolutionary nature of ML platform development and
deployment. None of the organizations we’ve profiled here, or any of the others that we’ve
talked to, have deployed their machine learning platform in a single “big bang.” Rather, each
organization’s ML platform evolved in a unique way based on its needs, users, skill sets,
organizational structure, and existing technology investments.

In this ebook we’ve identified a broad set of capabilities to be considered for supporting and
accelerating machine learning in the enterprise. Your team does not need to build an entire
end-to-end system for your efforts to be successful. Rather, teams should prioritize their
efforts based on a careful analysis of your users’ specific needs and your organization’s ability
to execute. Talking to your organization’s data scientists and ML engineers will likely yield a
short-list of pain points that could be alleviated with off-the-shelf or custom-developed tools.

http://www.twimlai.com
https://twitter.com/twimlai
mailto:sam@twimlai.com

page 33| twimlai.com | @twimlai | sam@twimlai.com

If your organization is new to data science, or you’re looking for general guidance on making
data scientists more effective, we recommend reviewing Monica Rogati’s, Data Science
Hierarchy of Needs46 below:

Figure 12. Data Science Hierarchy of Needs

Conclusions
We began this ebook with a discussion of the increasing importance of machine learning
models to the enterprise. If you agree that AI, and ML models in particular, will help drive
enterprise competitiveness in the future, then the premise of this ebook will not produce much
of an argument: enterprises will need to put people, processes, and technologies in place that
allow them to deliver ML models into production more efficiently, consistently, and scalably.

With this future as a backdrop, the importance of ML platforms becomes clear. Over the next
few years, enterprises will deploy ML platforms in increasing numbers because they help
make the benefits of machine learning more readily accessible at greater scale.

The ML platforms landscape is evolving rapidly. Awareness of the importance of ML platforms
and the availability of solutions in this area has grown dramatically in the past year. We hope
we’ve had a small part to play in this via our coverage of the topic on the TWIML AI Podcast.

To further support the development of an informed, sustainable community of technologists
equipped to meet the current and future ML platforms and infrastructure needs of their
organizations, we’re excited to host TWIMLcon: AI Platforms. This is the first conference of
its kind to focus on practical ML and AI platforms and infrastructure. We are dedicated to
creating a forum where data scientists, ML engineers, and platforms and infrastructure

 THE DATA SCIENCE
HIERARCHY OF NEEDS

LEARN/OPTIMIZE

LEARN/OPTIMIZE

EXPLORE/TRANSFORM

MOVE/STORE

COLLECT

AI,
Deep

Learning

A/B Testing,
Experimentation,

Simple ML Algorithms

Analytics, Metrics,
Segments, Aggregates,
Features, Training Data

Cleaning, Anomaly Detection, PREP

Reliable Data Flow, Infrastructure, Pipelines,
ETL, Structured andUnstructured Data Storage

Instrumentation, Logging, Sensors,
External Data, User Generated Content

http://www.twimlai.com
https://twitter.com/twimlai
mailto:sam@twimlai.com

page 34| twimlai.com | @twimlai | sam@twimlai.com

practitioners, leaders, and innovators can share, learn, and connect with one another on the
platforms, tools, technologies, and practices necessary to industrialize and scale the delivery
of machine learning and AI in the enterprise.

We invite you to join us for two exciting days of practical presentations, lively discussion, and
great community interactions. Learn more and register at twimlcon.com.

Needless to say, our research in and coverage of this topic will continue. Be sure to visit
twimlai.com/platforms to access additional content and resources in this area, including
profiles of the vendors, products, and projects mentioned in this ebook. While you’re there
you can also join our growing community of ML innovators working in this area.

Hope to see you soon!

http://www.twimlai.com
https://twitter.com/twimlai
mailto:sam@twimlai.com

page 35| twimlai.com | @twimlai | sam@twimlai.com

1.	 Carlos A. Gomez-Uribe and Neil Hunt, “The Netflix Recommender System: Algorithms, Business,

Value, an Innovation,” ACM Transactions on Management Information Systems, January 2016,

https://dl.acm.org/citation.cfm?id=2843948.

2.	 Sam Charrington, “Systems and Software for Machine Learning at Scale with Jeff Dean,” This

Week in Machine Learning & AI, April 2, 2018, https://twimlai.com/twiml-talk-124-systems-

software-machine-learning-scale-jeff-dean/.

3.	 Sam Charrington, “TWIML Presents: AI Platforms Volume 1,” This Week in Machine Learning &

AI, November 2018, https://twimlai.com/aiplatforms2018/.

4.	 Sam Charrington, “TWIML Presents: AI Platforms Volume 2,” This Week in Machine Learning &

AI, May 2019, https://twimlai.com/aiplatforms2/.

5.	 Robert Chang, “Using Machine Learning to Predict Value of Home on Airbnb,” Medium, July 17,

2017, https://medium.com/airbnb-engineering/using-machine-learning-to-predict-value-of-

homes-on-airbnb-9272d3d4739d.

6.	 Andrew Hoh and Nikhil Simha, “Zipline: Airbnb’s Machine Learning Data Management Platform,”

SAIS 2018, June 12, 2018, https://databricks.com/session/zipline-airbnbs-machine-learning-

data-management-platform.

7.	 Jeffrey Dunn, “Introducing FBLearner Flow: Facebook’s AI Backbone,” Facebook Engineering,

May 9, 2016, https://engineering.fb.com/core-data/introducing-fblearner-flow-facebook-s-ai-

backbone.

8.	 Kim Hazelwood, et al, “Applied Machine Learning at Facebook: A Datacenter Infrastructure

Perspective,” Facebook, Inc., February 24, 2018, https://research.fb.com/wp-content/

uploads/2017/12/hpca-2018-facebook.pdf.

9.	 Sam Charrington, “Holistic Optimization of the LinkedIn Newsfeed with Tim Jurka,” This Week in

Machine Learning & AI, January 28, 2019, https://twimlai.com/twiml-talk-224-holistic-

optimization-of-the-linkedin-newsfeed-with-tim-jurka/.

10.	 Sam Charrington, “Scaling Machine Learning on Graphs at LinkedIn with Hema Raghavan and

Scott Meyer,” This Week in Machine Learning & AI, March 4, 2019, https://twimlai.com/twiml-

talk-236-scaling-machine-learning-on-graphs-at-linkedin-with-hema-raghavan-and-scott-

meyer/.

11.	 Sam Charrington, “End-to-End Data Science to Drive Business Decisions at LinkedIn with Burcu

Baran,” This Week in Machine Learning & AI, April 24, 2019, https://twimlai.com/twiml-talk-256-

end-to-end-data-science-to-drive-business-decisions-at-linkedin-with-burcu-baran/.

12.	 Sam Charrington, “Productive Machine Learning at LinkedIn with Bee-Chung Chen,” This Week in

Machine Learning & AI, November 15, 2018, https://twimlai.com/twiml-talk-200-productive-

machine-learning-at-linkedin-with-bee-chung-chen/.

13.	 Jermey Hermann and Mike Del Balso, “Meet Michelangelo: Uber’s Machine Learning Platform,”

Uber Engineering, September 5, 2017, https://eng.uber.com/michelangelo/.

References

http://www.twimlai.com
https://twitter.com/twimlai
mailto:sam@twimlai.com

page 36| twimlai.com | @twimlai | sam@twimlai.com

References - continued

14.	 Tim Sell and Willem Pienaar, “Introducing Feast: an open source feature store for machine

learning,” Google Cloud, January 18, 2019, https://cloud.google.com/blog/products/ai-machine-

learning/introducing-feast-an-open-source-feature-store-for-machine-learning.

15.	 Logical Clocks, “Hopsworks: Full-Stack Platform for Scale-Out Data Science,” Github, https://

github.com/logicalclocks/hopsworks.

16.	 Ben Mabey, “Provenance: Provenance and Caching Library for Python Functions,” Github, https://

github.com/bmabey/provenance.

17.	 Robert Chang, “A Beginner’s Guide to Data Engineering — The Series Finale,” Medium, June 24,

2018, https://medium.com/@rchang/a-beginners-guide-to-data-engineering-the-series-finale-

2cc92ff14b0.

18.	 SigOpt is a sponsor of this ebook.

19.	 IDSIA, “Sacred: Infrastructure for Computational Research”, Github, https://github.com/IDSIA/

sacred.

20.	 Google, “TensorBoard: TensorFlow’s Visualization Toolkit,” Tensorflow, https://www.tensorflow.

org/tensorboard.

21.	 Manasi Vartak, et al, “ModelDB: A System to Manage Machine Learning Models,” Github, https://

github.com/mitdbg/modeldb.

22.	 Kubeflow, “Kubeflow: Machine Learning Toolkit for Kubernetes,” Github, https://github.com/

kubeflow/.

23.	 Sam Charrington, “Kubernetes for Machine Learning, Deep Learning & AI,” This Week in Machine

Learning & AI, https://twimlai.com/kubernetes/.

24.	 James Kanter and Kalyan Veeramachaneni, “Deep Feature Synthesis: Towards Automating Data

Science Endeavors,” 2015, http://www.jmaxkanter.com/static/papers/DSAA_DSM_2015.pdf.

25.	 Feature Labs, “Featuretools: An Open Source Python Framework for Automated Feature

Engineering,” Github, https://github.com/featuretools/featuretools.

26.	 Wikipedia contributors, “Hyperparameter optimization,” Wikipedia, The Free Encyclopedia,

August 13, 2019, https://en.wikipedia.org/w/index.php?title=Hyperparameter_

optimization&oldid=910615943.

27.	 Yelp, “MOE: A Global, Black Box Optimization Engine for Real World Metric Optimization,” Github,

February 23, 2014, https://github.com/Yelp/MOE.

28.	 Frank Hutter, et al, “SMAC,” AutoML Freiburg-Hannover, https://www.automl.org/automated-

algorithm-design/algorithm-configuration/smac/

29.	 Scikit-Optimize, “Scikit-Optimize: Sequential Model-based Optimization with a `scipy.optimize`

Interface,” Github, https://github.com/scikit-optimize/scikit-optimize.

30.	 Kubeflow, “Katib: Kubernetes Native System for Hyperparameter Tuning and Neural Architecture

Search,” Github, April 1, 2018, https://github.com/kubeflow/katib.

http://www.twimlai.com
https://twitter.com/twimlai
mailto:sam@twimlai.com

page 37| twimlai.com | @twimlai | sam@twimlai.com

References - continued

31.	 Ruben Martinez-Cantin, “BayesOpt: A Toolbox for Bayesian Optimization, Experimental Design

and Stochastic Bandits,” Github https://github.com/rmcantin/bayesopt.

32.	 Hyperopt, “Hyperopt: Distributed Asynchronous Hyperparameter Optimization in Python” Github,

Septermber 4, 2011, https://github.com/hyperopt/hyperopt.

33.	 UCBerkeley RISELab, “Tune: Scalable Hyperparameter Search,” Github https://github.com/

ray-project/ray/tree/master/python/ray/tune.

34.	 Cade Metz, “Building A.I. That Can Build A.I.,” The New York Times, November 5, 2017, https://

www.nytimes.com/2017/11/05/technology/machine-learning-artificial-intelligence-ai.html

35.	 Google, “Cloud AutoML,” Google Cloud, https://cloud.google.com/automl/.

36.	 Kubeflow, “Introduction to Kubeflow Pipelines,” Kubeflow, https://www.kubeflow.org/docs/

components/pipelines/pipelines/.

37.	 Nteract, “Papermill: Parameterize, Execute, and Analyze Notebooks,” Github, https://github.com/

nteract/papermill.

38.	 Sam Charrington, “Bighead: Airbnb’s Machine Learning Platform with Atul Kale,” This Week in

Machine Learning & AI, November 8, 2018, https://twimlai.com/twiml-talk-198-bighead-

airbnbs-machine-learning-platform-with-atul-kale/.

39.	 Sam Charrington, “Supporting TensorFlow at Airbnb with Alfredo Luque,” This Week in Machine

Learning & AI, March 29, 2019, https://twimlai.com/twiml-talk-244-supporting-tensorflow-at-

airbnb-with-alfredo-luque/.

40.	 Sam Charrington, “Productizing ML at Scale at Twitter with Yi Zhuang,” This Week in Machine

Learning & AI, June 3, 2019, https://twimlai.com/twiml-talk-271-productizing-ml-at-scale-at-

twitter-with-yi-zhaung/.

41.	 IBM, “Fabric for Deep Learning,” Github, https://github.com/IBM/FfDL.

42.	 Neoklis Polyzotis, et al, “Data Management Challenges in Production Machine Learning,” Google,

2017, https://static.googleusercontent.com/media/research.google.com/en//pubs/

archive/46178.pdf.

43.	 Google, “TensorFlow Serving: Architecture,” TensorFlow, https://www.tensorflow.org/tfx/serving/

architecture.

44.	 Christopher Olston, et al, “TensorFlow-Serving: Flexible, High-Performance ML Serving,” NIPS

2017, http://learningsys.org/nips17/assets/papers/paper_1.pdf.

45.	 Julien Simon, “Mastering the Mystical Art of Model Deployment,” Medium, July 28, 2018, https://

medium.com/faun/mastering-the-mystical-art-of-model-deployment-c0cafe011175.

46.	 Monica Rogati, “The AI Hierarchy of Needs,” Hackernoon, June 12, 2017, https://hackernoon.

com/the-ai-hierarchy-of-needs-18f111fcc007.

http://www.twimlai.com
https://twitter.com/twimlai
mailto:sam@twimlai.com

page 38| twimlai.com | @twimlai | sam@twimlai.com

About This Week in Machine Learning & AI
Machine learning and artificial intelligence are dramatically changing how businesses operate
and people live. Through our podcast, publications, and community, This Week in Machine
Learning & AI brings top minds and ideas from the world of AI to a broad and influential
community of data scientists, engineers and tech-savvy business and IT leaders.

TWiML was created and is hosted by Sam Charrington, a sought after speaker, commentator
and thought leader, and the founder of CloudPulse Strategies, an industry analysis and
consulting firm. Sam’s professional interests center on the many enterprise applications of
machine learning and AI, bringing AI-powered products to market, and AI-enabled and -enabling
technology platforms.

CloudPulse Strategies creates and curates intelligent content that helps makers make and
executives execute, providing an inside look at the real-world application of “intelligent platform”
technologies. We build and support communities of innovators who are as excited about
these technologies as we are. And we advise organizations to help craft strategies for taking
advantage of the vast opportunities created by ML and AI.

Connect with us:

	 sam@twimlai.com

	 @samcharrington

	 @twimlai

	 www.linkedin.com/in/samcharrington

	 twimlai.com

http://www.twimlai.com
https://twitter.com/twimlai
mailto:sam@twimlai.com
https://twitter.com/samcharrington
https://twitter.com/twimlai
https://twimlai.com/
https://www.linkedin.com/in/samcharrington/
https://twitter.com/twimlai
https://twitter.com/samcharrington
mailto:sam@twimlai.com
https://twimlai.com/

Copyright © 2019, CloudPulse Strategies. All Rights Reserved.
CloudPulse, TWiML, and the CloudPulse Strategies and TWiML
logos are trademarks of CloudPulse Strategies, LLC.

This document makes descriptive reference to trademarks that
may be owned by others. The use of such trademarks herein is
not an assertion of ownership of such trademarks by CloudPulse
and is not intended to represent or imply the existence of an
association between CloudPulse and the lawful owners of such
trademarks. Information regarding third-party products, services
and organizations was obtained from publicly available sources,
and CloudPulse cannot confirm the accuracy or reliability of such
sources or information. Its inclusion does not imply an endorsement
by or of any third party.

